297 resultados para PHOTOELECTRON-SPECTROSCOPY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of potassium-promoted CoMo/Al2O3 has been investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR). CoMoO4 was found in the CoMo/Al2O3 catalyst by XRD and is destroyed by the presence of potassium. The reducibility of molybdenum is enhanced by potassium in the CoMoK/Al2O3 catalyst and is easier to reduce to Mo(IV) during sulfidation. In the oxidic state catalyst cobalt is increased on the surface by the addition of potassium. After sulfidation this phenomena disappeared, the distribution of cobalt remains at a constant level and is unaffected by the potassium content. The addition of potassium leads to a monotonical decrease of the molybdenum dispersion with the impregnating amount of potassium in the oxidic state catalyst but is more complicated after sulfidation. Potassium is well dispersed on the surface in both the oxidic and sulfided state. The activity in the water-gas shift reaction was correlated with the potassium content of CoMoK/Al2O3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MoO3/Al2O3 is reduced at least partly by sulfur which is formed from H2S in sulfidation with H2S/N2 mixture. SO2 formation during TPD of MoO3/Al2O3 with presorbed H2S provides evidence for the explanation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films of PSt/PMAA and PEO-PSt-PEO block polymers were deposited on a polystyrene substrate by solution adsorption (with or without solvent treatment), and the film surfaces were characterized by means of XPS. Direct solvent - casting of PEO-PSt-PEO from benzene solutions resulted in PSt-rich surfaces, whereas PMAA richer surfaces were obtained for PSt/PMAA films cast from DMF solutions. Moreover, solvent treatment after casting had profound effect on the film surface composition. Treatment with water markedly increased the surface concentration of polar PEO segments. In the case of PSt-PMAA block polymers, the PSt content on the surface increased in the order of water < ethanol < cyclohexane < petroleum ether, the last-named giving films with almost pure PSt surface. It is well worth noticing that the bulk composition had little to do with the surface composition for both PSt/PMAA and PEO-PSt-PEO block polymers within the composition range investigated when subsequent solvent treatment was applied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work PTFE sheets irradiated with gamma-rays at 150-degrees-C and 200-degrees-C were studied using x-ray photoelectron spectroscopy (XPS). The main structural changes in PTFE due to radiation are the formation of CF3 and CF groups. An irradiation temperature dependence of the relative content of the three kinds of groups in irradiated PTFE was observed. The CF3 groups, especially when irradiation is carried out a lower temperatures, can defluorinate in the same manner as previosly reported for CF2 groups. The CF groups, on the other hand, are observed to increase with increasing irradiation dose and irradiation temperature; the latter was explained as due to an increase in branching structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The corrosion behaviour of titanium substance and the XPS characterization of Ti surface in the H2C2O4 solution have been first studied by X-ray photoelectron spectroscopy, The experimental results show that there am mile Ti-2 and Ti2+ on sample surface in 10% H2C2O4 solution for two boars corrosion at 80 degrees C, but if corrosion is extended to 4 hones, the surface composition is mainly TiO2 with a small amount of Ti2+. This result corresponds to the structure of TiH1.642 composion in sample surface found by XRD analysis. Since bath TiO2 and the surface coating RuO2 are of Gald-Redstone structure, therefore electrode materials of Ti-Ru are stable in chemical industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inhibitory effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine (TPT) molecules on the corrosion of mild steel in 1 mol/L HCl and microcosmic inhibitory mechanism were investigated by X-ray photoelectron spectroscopy and ellipsometry. XPS results showed that C Is and N Is peaks of TTC, C Is and N Is peaks of TPT and their integral areas were obtained, which suggested the layer of the inhibitors (TTC or TPT) should have effectively protected the mild steel surface from the corrosion; and the depression from the inhibitors for the corrosion of mild steel surface was studied using ellipsometry combined with potentiodynamic polarization and the phasic difference was gained, which displayed the inhibitory coverage of the inhibitors formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been found that microbial communities play a significant role in the corrosion process of steels exposed in aquatic and soil environments. Biomineralization influenced by microorganisms is believed to be responsible for the formation of corrosion products via complicated pathways of electron transfer between microbial cells and the metal. In this study, sulfide corrosion products were investigated for 316L stainless steel exposed to media with sulfate-reducing bacteria media for 7 weeks. The species of inorganic and organic sulfides in the passive film on the stainless steel were observed by epifluorescence microscope, environmental scanning electron microscope combined with energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The transformation from metal oxides to metal sulfides influenced by sulfate-reducing bacteria is emphasized in this paper. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MP-25 resin is a chlorine-containing polymer widely used in coatings. The effects of two types of nano-TiO2 (P-25 and RM301 LP) on MP-25 were studied with saline immersion, UV irradiation, and electrochemical impedance spectroscopy. UV irradiation was evaluated in terms of gloss change and X-ray photoelectron spectroscopy (XPS). The results indicate that, compared to pigment R-930 TiO2, P-25 reduced the immersion resistance and accelerated UV aging of the MP-25 coating, whereas RM301 LP showed the opposite effects. XPS analysis showed that MP-25 resin degraded under UV irradiation via dechlorination and C-C bond breakage, similarly to poly(vinyl chloride), but RM301 LP could inhibit the aging of MP-25 to a certain extent. A skin effect of oxygen and chlorine was identified in MP-25 resin by XPS. RM301 LP could improve the impedance of the MP-25 coating because of its excellent fill capacity. Hence, rutile nano-TiO2 RM301 LP represents an excellent additive for MP-25 resin. (c) 2007 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Propylene epoxidation by air was carried out on NaCl-modified silver (NaCl/Ag) catalysts, and the catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effects of NaCl loadings, propylene to oxygen ratio, and the reaction time on the catalytic performance were investigated. It was found that the addition of NaCl to silver significantly increases the propylene oxide (PO) selectivity. The PO yield has a maximum when the NaCl loading is about 10 wt.%. Also 12.4% conversion of propylene and 31.6% selectivity to PO are obtained on the NaCl/Ag (10 wt.%) catalyst at 350 degreesC, space velocity 1.8 x 10(4) h(-1) and C3H6:O-2 = 1:2. XPS and XRD characterizations show that AgCl formed on the silver catalyst was favorable to propylene epoxidation. A compound with highly oxidized Ag ion was also found, which may be effective for the reaction. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coadsorption of NO and O-2 on Ag(110) surface has been studied by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and in situ Raman spectroscopy. The existence of oxygen enhances the adsorption of NO by forming the NOx species, that is, NO2 and NO3, and the NO in turn as a promotor facilitates the cleavage of the dioxygen bond, forming the surface atomic oxygen species having the same spectral characteristics as those produced using oxygen at high pressure. The oxygen species generated by the interaction is composed of two parts. One is produced directly by the decomposition of surface NO-O-2 complex at ca 625 K, which raised an O 1s feature at 530.5 eV and is absent at ca 800 K, while the another with an O 1s binding energy of 529.2 eV emerges at higher temperatures and shows similar properties as the reported gamma-state oxygen which bound tightly on restructured silver surface. The exposure to NO and O-2 causes noticeable changes in the morphology of the Ag(110) surface and the flat terraces superseded by small (ca 0.1 mu m) pits, and particles with typical diameters of a few micrometres were formed at elevated temperatures. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure and properties of Sm overlayer and Sm/Rh surface alloy have been investigated with Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption spectroscopy (TDS). The growth of Sm on Rh(100) at room temperature (RT) appears following the Stranski-Krastanov growth mode and only the trivalent state Sm is observed from XPS results. Thermal treatment of the Sm film at 900 K leads to the formation of ordered surface alloy which shows the c(5 root2 x root2)R45 degrees and c(2 x 2) LEED patterns. Annealing the Sm film at temperature above 400 K makes the binding energy (B.E.) of Sm 3d(5/2) shift to higher energy by 0.7 eV, which indicates charge transfer from Sm to Rh(100) substrate, causing the increase of CO desorption temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thin alumina film-supported metallic molybdenum model catalyst was prepared by thermal decomposition of MO(CO)6, and CO chemisorption on the catalyst was investigated in-situ by thermal desorption spectroscopy (TDS) and X-ray photoelectron spectroscopy (XPS). The results showed that a molybdenum-carbonyl-like species was formed on the alumina surface at low temperature by high coordination of CO with the surface metallic molybdenum nanoparticles, indicating a reversible regeneration of molybdenum carbonyl on the alumina surface. CO chemisorption on the model catalyst surface caused the Mo 3d XPS peak to shift toward higher binding energy. The formed molybdenum carbonyl species appeared at about 240 K in the TDS. The supported metallic molybdenum nanoparticles were quite different from the bulk molybdenum in chemical properties, which indicated a prominent particle-size effect of the clusters.