387 resultados para III-Nitride
Resumo:
[NH3CH2CH2CH2NH2][NH3CH2CH2CH2NH3](2)[(As2AsMo8V4O40)-As-III-Mo-V-O-IV].3H(2)O was hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data: monoclinic, C2/c, a = 45.375(9) Angstrom, b = 11.774(2) Angstrom, c = 23.438(5) Angstrom, beta = 96.62(3)degrees. X-ray crystallographic study showed that the crystal structure was constructed by bicapped alpha-Keggin fragments [(As2AsMo8V4O40)-As-III-Mo-V-O-IV](5-) polyoxoanion. The title compound had a high catalytic activity for the oxidation of benzaldehyde to benzoic acid using H2O2 as oxidant in a liquid-solid biphase system.
Resumo:
Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.
Resumo:
Indium(III) hexacyanoferrate(II/III) (InHCF) supported on graphite powder was prepared using the in situ chemical deposition procedure and subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive graphite organosilicate composite. The composite was used as the electrode material to fabricate a three-dimensional InHCF-modified electrode. InHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The chemically modified electrode can electrocatalyze the oxidation of thiosulfate, and exhibits a good repeatability of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability.
Resumo:
Rare earth(III)-histidine (His)- tryptophane (Trp). Ca(II)-His-Trp and Zn(II)-His-Trp systems were studied by potentiometric titration and computer simulation under physiological conditions. The species of the systems and their stability constants were determined. The distributions of species of rare earth(III), Ca(II) and Zn(II) were discussed.
Resumo:
The rate of extraction of Er(III) from aqueous acetate solutions at 0. 2 mol/L ionic strength by HBTMPTP in n-heptane was studied by using a constant interfacial area cell with laminar flow at (30+/- 0. 5)degrees C. The interfacial activity of HBTMPTP was investigated at n-heptane/0. 2 mol/L (H, Na)Ac (pH=5. 00) interface, The rate of Er(III) extraction was measured at different chemical compositions by varying hydrogen ion, HBTMPTP, Cyanex 302 and chlorine ion concentrations, The effect of stirring speed, temperature and special interfacial area on the rate of extraction was also studied. The results showed that, under the conditions of the experiments, the overall rate is diffusion controlled, that the impurities of Cyanex 302 have the effect of synergistic extraction.
Resumo:
Nanopowders of amorphous silicon nitride were densified and sintered without additives under ultrahigh pressure (1.0-5.0 GPa) between room temperature and 1600 degrees C. The powders had a mean diameter of 18 nm and contained similar to 5.0 wt% oxygen that came from air-exposure oxidation, Sintering results at different temperatures were characterized in terms of sintering density, hardness, phase structure, and grain size. It was observed that the nanopowders can be pressed to a high density (87%) even at room temperature under the high pressure. Bulk Si3N4 amorphous and crystalline ceramics (relative density: 95-98%) were obtained at temperatures slightly below the onset of crystallization (1000-1100 degrees C and above 1420 degrees C, respectively. Rapid grain growth occurred during the crystallization leading to a grain size (>160 nm) almost 1 order of magnitude greater than the starting particulate diameters, With the rise of sintering temperature, a final density was reached between 1350 and 1420 degrees C, which seemed to be independent of the pressure applied (1.0-5.0 GPa), The densification temperature observed under the high pressure is lower by 580 degrees C than that by hot isostatic pressing sintering, suggesting a significantly enhanced low-temperature sintering of the nanopowders under a high external pressure.
Resumo:
Speciation of Pr(III) in human blood plasma has been investigated by computer simulation. The speciation and distribution of Pr(III) has been obtained. It has been found that most of Pr(III) is bound to phosphate and to form precipitate. The results obtained-are in accord with experimental observations.
Resumo:
The insoluble species of Gd (III) in human blood plasma were investigated by computer simulation. The distribution of the Gd (I) species was obtained. It was found that most of the Gd (III) ions were bound to phosphate to form precipitate GdPO4 at the concentration of 1. 000 x 10(-7) mol/L and when the concentration of the Gd (III) increased to 3. 750 x 10(-4) mol/L, in excess of the concentration of phosphate, the Gd (III) ions were bound to carbonate to form another kind of precipitate, Gd-2 (CO3)(3).
Resumo:
The solution structures of diamagnetic lanthanide (III) complexes of DTPA-BIN (Ln = La, Y, Lu, Sc) have been investigated by H-1 NMR, C-13 NMR and 2D NMR. For each complex, two or more species of asymmetric conformations with little distinction were identified at room temperature. And their solution structures vary with the radius of the central metals. NMR spectra support the hypothesis that Sc3+ with smaller radius formed an eight-coordinated structure with DTPA-BIN, La3+ with larger radius formed nine- or ten-coordinated structures with DTPA-BIN, and Y (DTPA-BIN) and Lu (DTPA-BIN) had nine-coordinated solution structures. The solution structure of Gd (DTPA-BIN) was obtained from the similarity of radius between Gd3+ and Y3+, which is a nine-coordinated structure formed by three nitrogens, three acetate oxygens, two acetyl oxygens, one water molecule and a gadolinium(III) cation.
Resumo:
Extraction and separation of Eu3+ and Zn2+ in sulfuric acid solution was investigated by hollow fiber membrane with cyanex 302 (bis (2,4,4-trimethylpentyl) monothiophosphinic acid) in counter-currently circulating operation. Reaction mechanism of membrane extraction and effect of extractant concentration and H+ concentration in aqueous phase on the mass transfer coefficient were discussed. It can be concluded that Zn2+ can be extracted completely from Eu3+ sulfate solution according to the kinetics competing difference. In one extractor process, extraction percentage of Zn2+ was not completely and Eu3+ was not extracted. Extraction percentage of Zn2+ reached 94.92%, but Eu3+ only reached 8.59% after 100 minutes extraction in two series connectors and that of Zn2+ and Eu3+ reached 99.9% and 6.53% respectively after 40 minutes extraction in three series connectors.
Resumo:
The title compound, [NH3CH2CH2CH2NH2][NH3CH2CH2CH2NH3](2)[As-2(III) As-v Mo-8 V-4(IV) O-40] (.) 5H(2)O, was hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data: monoclinic, C2/c, a = 45.375(9) Angstrom, b = 11.774(2) Angstrom, c = 23.438(5) Angstrom, beta = 96.62(3)degrees. X-ray crystallographic study showed that the crystal structure was constructed by bi-capped alpha -Keggin fragments [(As2AsMo8V4O40)-As-III-Mo-v-O-IV](5-) polyoxoanion. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A multi-phase model was developed and Tb(III) speciation in human blood plasma was studied. At a concentration below 3.744x 10(-4) mol/L (or at the concentration), Tb(III) is mostly bound to phosphate to form precipitate of TbPO4. As the concentration of Tb(III) increases, phosphate is exceeded and another kind of precipitate of Tb-2(CO3)(3) appears. Among soluble Tb(III) species, Tb(III) mainly distribute in [Tb (Tf)] at low concentration and in [Tb (HSAA, [Tb-2 (Tf)], [Th (IgG)], [Tb (Lactate)](2+), [Tb (CitArgH)] and free Tb(III) at high concentration.
Resumo:
The binary and ternary rare-earth terbium(m) complexes were introduced into the styrene/alpha -methylacrylic acid copolymerization system, and some optical resins that possess a high transparency in visible light region were obtained. The study of the optical property showed that they have good luminescent properties such as a high luminous intensity and a long luminous lifetime, In addition, we investigated the relationship among the transparency, the luminescent property of the copolymer, and the content of the components in the polymeric system. The results indicated that the optical resins can provide a relatively stable environment for composite rare earth complexes, which is good to exhibit the luminescent properties of rare earth complexes. At the same time, the rare earth complexes can offer the transparent resin a novel function.
Resumo:
In this study, silica-based transparent organic-inorganic hybrid films were prepared by the sol-gel method. Tetraethoxysilane and 3-(trimethoxysilyl)propyl methacrylate were used as the inorganic and organic compounds, respectively. Lanthanide complexes [Eu(phen)(2)]Cl-3 were incorporated into the organically modified silicates (ORMOSIL) and the luminescence properties of the resultant hybrid films (ORMOSIL:[Eu(phen)(2)]Cl-3) were characterized. The relative quantum efficiency was observed higher and the lifetimes were longer in hybrid films than those in pure silica films. Furthermore, thermal stability of hybrid films incorporating various concentration of Eu(III) complex was studied. (C) 2001 Elsevier Science B.V. All rights reserved.