311 resultados para Direct manipulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen adsorption and desorption on a Pd(100) surface with a mesoscopic defect were studied by photoemission electron microscopy (PEEM). The defect surface, with an area of approximately 200 x 60 mu m(2), behaved differently from the perfect Pd(100) surface towards the adsorption of oxygen. When saturated, both surface oxygen and subsurface oxygen coexisted on the defect surface, whereas only surface oxygen was present on the Pd(100) surface. Upon heating, subsurface oxygen diffused back to the surface and desorbed with surface oxygen at the same time. The difference in oxygen adsorption ability between the defect surface and the perfect Pd(100) surface can be attributed to different structures of these two surfaces. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct enantiomeric separation of all four optical isomers of 2-phenylcyclopropane carboxylate ester was first achieved on each of the three different beta-cyciodextrin chiral stationary phases (CSPs) in GC. Using these CSPs, enantiomeric excess of the products of enantioselective cyclopropanation can be determined directly, conveniently and fast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium species in tetrahedral and octahedral coordination in V-MCM-41 molecular sieve are characterized by UV resonance Raman bands at 1070 and 930 cm(-1) respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new epoxidation system is reported in this communication. Heteropolyoxometalates catalyst/recyclable reductant 2-ethylanthrahydroquinone/O-2 is employed for epoxidation of olefins. The reductant can be regenerated by catalytic hydrogenation without consumption. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective oxidation of ethylene to acetic acid was investigated on Pd-acid/support catalyst system. The catalytic activity is influenced strongly by the acidity of the catalyst. The stronger the catalyst acidity the higher the catalytic activity. The nature of the support also influences the activity of the catalyst substantially. The catalyst has highest activity when it exhibits highest acidity on silica.