311 resultados para Diatomaceous earth
Resumo:
Locating the quantitized natural sediment fingerprints is an important work for marine sediment dynamics study. The total of 146 sediment samples were collected from the Shelf of the East China Sea and five rivers, including Huanghe (Yellow), Changjiang (Yangtze), Qiantang, Ou and Min River. The sediment grain size and the contents of rare earth elements (REEs) were measured with laser particle size analyzer and ICP-MS technology. The results show that absolute REE content (Sigma REE) and the concentration ratio of light REEs to heavy REEs (L/HREE) are different in the sediments among those rivers. There are higher REE contents in being less than 2 m and 2-31 mu m fractions in the Changjiang Estuary surface sediments. The REE contents of bulk sediment are dominated by the corresponding values of those leading size-fractions. Sigma REE of sediment is higher close to the estuaries and declines seaward on the inner shelf of the East China Sea (ECS). The L/HREE ratio has a tendency of increase southward from 28 degrees N. Hydrodynamic conditions plays a predominate role on spacial distributions of the surficial sediment's REE parameters. In some situations, the currents tend to remove the coarser light grains from initial populations, as well as the deposit of the finer heavy mineral grains. In other situations, the currents will change the ratio of sediment constituents, such as ratio between silts and clays in the sediments. As a result, the various values of Sigma REE or L/HREE ratio in different bulk sediments are more affected by the change of size-fractions than source location. Under the long-term stable hydrodynamic environment, i.e., the East China Sea Shelf, new sediment transport model based on the size and density gradation concept may help to understand the spatial distribution patterns of REE parameters.
Resumo:
Based on Th-230-U-238 disequilibrium and major element data from mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs), this study calculates mantle melting parameters, and thereby investigates the origin of Th-230 excess. (Th-230/U-238) in global MORBs shows a positive correlation with Fe-8, P (o), Na-8, and F-melt (Fe-8 and Na-8 are FeO and Na2O contents respectively after correction for crustal fractionation relative to MgO = 8 wt%, P (o)=pressure of initial melting and F (melt)=degree of melt), while Th-230 excess in OIBs has no obvious correlation with either initial mantle melting depth or the average degree of mantle melting. Furthermore, compared with the MORBs, higher (Th-230/U-238) in OIBs actually corresponds to a lower melting degree. This suggests that the Th-230 excess in MORBs is controlled by mantle melting conditions, while the Th-230 excess in OIBs is more likely related to the deep garnet control. The vast majority of calculated initial melting pressures of MORBs with excess Th-230 are between 1.0 and 2.5 GPa, which is consistent with the conclusion from experiments in recent years that D (U)> D (Th) for Al-clinopyroxene at pressures of > 1.0 GPa. The initial melting pressure of OIBs is 2.2-3.5 GPa (around the spinel-garnet transition zone), with their low excess Ra-226 compared to MORBs also suggesting a deeper mantle source. Accordingly, excess Th-230 in MORBs and OIBs may be formed respectively in the spinel and garnet stability field. In addition, there is no obvious correlation of K2O/TiO2 with (Th-230/U-238) and initial melting pressure (P (o)) of MORBs, so it is proposed that the melting depth producing excess Th-230 does not tap the spinel-garnet transition zone. OIBs and MORBs in both (Th-230/U-238) vs. K2O/TiO2 and (Th-230/U-238) vs. P (o) plots fall in two distinct areas, indicating that the mineral phases which dominate their excess Th-230 are different. Ce/Yb-Ce curves of fast and slow ridge MORBs are similar, while, in comparison, the Ce/Yb-Ce curve for OIBs shows more influence from garnet. The mechanisms generating excess Th-230 in MORBs and OIBs are significantly different, with formation of excess Th-230 in the garnet zone only being suitable for OIBs.
Resumo:
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a flat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected; the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Set. D, 47(12): 1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if tire density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth's rotation both on the surface wave solutions and the interfacial wave solutions should be considered.
Resumo:
In this paper, we present an exact solution for nonlinear shallow water on a rotating planet. It is a kind of solitary waves with always negative wave height and a celerity smaller than linear shallow water propagation speed square-root gh. In fact, it propagates with a speed equal to (1 + a/h) square-root gh(1 + a/h) where a is the negative wave height. The lowest point of the water surface is a singular point where the first order derivative has a discontinuity of the first kind. The horizontal scale of the wave has actually no connection with the water depth.
Distributions of dissolved rare earth elements during estuarine mixing at the Changjiang River mouth