47 resultados para water-in-oil emulsion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)(3)(2+)-doped silica (RuDS) nanoparticles conjugated with a biopolymer chitosan membrane was developed. These uniform RuDS nanoparticles ( similar to 40 nm) were prepared by a water-in-oil microemulsion method and were characterized by electrochemical and transmission electron microscopy technology. The Ru( bpy)(3)(2+)-doped interior maintained its high ECL efficiency, while the exterior nanosilica prevented the luminophor from leaching out into the aqueous solution due to the electrostatic interaction. This is the first attempt to branch out the application of RuDS nanoparticles into the field of ECL, and since a large amout of Ru(bpy)(3)(2+) was immobilized three-dimensionally on the electrode, the Ru( bpy)(3)(2+) ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. This sensor shows a detection limit of 2.8 nM for tripropylamine, which is 3 orders of magnitude lower than that observed at a Nafion-based ECL sensor. Furthermore, the present ECL sensor displays outstanding long-term stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solution of non-volatile solutes can be concentrated to saturation by membrane distillation. If the solute is easy to crystalize, the membrane distillation-crystallization phenomenon will appear during the membrane distillation of saturated solutions. It is possible that crystalline products are separated from concentrated solutions by a membrane process. In this work the PVDF capillary membrane, which was improved on hydrophobicity by using LiCl instead of a water-soluble polymer as an additive, has been used for treating the waste water of taurine. The crystalline product has been obtained from the waste water by the membrane distillation-crystallization technique. The results have shown good prospects for a membrane distillation application for treatment of industrial waste water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Qikou Depression is the largest hydrocarbon bearing depression in the western part of the Bohai bay basin, dominated by fan delta and lacustrine strata with volcanic and volcaniclastic rocks. In this study, the formation pressures and hydrochemistry of the formation water in the Qikou depression are investigated. It is found that a significant overpressure occurs in the Dongying (Ed) Formation and the first member (Est), the second member (Es2), the third member (Es3) of the Shahejie Formation. The pressure coefficients commonly range from 1.2 to 1.6 with the highest pressure coefficient being 1.7. The analysis of hydrochemistry data shows that the whole depression is dominated by NaHCO3 water type. The concentration of total dissolved solid (TDS) ranges from 2.13 to 53.16 g/L and shows a distinct vertical variation of salinity and ion ratios. High salinity water (TDS> 10 g/L) occurs below a depth of 2500 m, which coincides with the presence of the overpressured system. However, the increasing trend of TDS is diminished below 3500 m because the generation of organic acids in Qikou Depression is inhibited in the presence of overpressure. The analysis of the relationship among different ions indicates that the present-day characteristics of the formation water result from the albitization of feldspar and the dissolution of sodium-rich silicate minerals and halite in the different hydrochemical and pressure systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The obduction of equatorial 13 degrees C Water in the Pacific is investigated using a simulated passive tracer of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The result shows that the 13 degrees C Water initialized in the region 8 degrees N-8 degrees S, 130 degrees-90 degrees W enters the surface mixed layer in the eastern tropical Pacific, mainly through upwelling near the equator, in the Costa Rica Dome, and along the coast of Peru. Approximately two-thirds of this obduction occurs within 10 years after the 13 degrees C Water being initialized, with the upper portion of the water mass reaching the surface mixed layer in only about a month. The obduction of the 13 degrees C Water helps to maintain a cool sea surface temperature year-round, equivalent to a surface heat flux of about -6.0 W m(-2) averaged over the eastern tropical Pacific (15 degrees S-15 degrees N, 130 degrees W-eastern boundary) for the period of integration (1993-2006). During El Nino years, when the thermocline deepens as a consequence of the easterly wind weakening, the obduction of the 13 degrees C Water is suppressed, and the reduced vertical entrainment generates a warming anomaly of up to 10 W m(-2) in the eastern tropical Pacific and in particular along the coast of Peru, providing explanations for the warming of sea surface temperature that cannot be accounted for by local winds alone. The situation is reversed during La Nina years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin and pathway of the thermostad water in the eastern equatorial Pacific Ocean, often referred to as the equatorial 13 degrees C Water, are investigated using a simulated passive tracer and its adjoint, based on circulation estimates of a global general circulation model. Results demonstrate that the source region of the 13 degrees C Water lies well outside the tropics. In the South Pacific, some 13 degrees C Water is formed northeast of New Zealand, confirming an earlier hypothesis on the water's origin. The South Pacific origin of the 13 degrees C Water is also related to the formation of the Eastern Subtropical Mode Water (ESTMW) and the Sub-Antarctic Mode Water (SAMW). The portion of the ESTMW and SAMW that eventually enters the density range of the 13 degrees C Water (25.8 < sigma(theta) < 26.6 kg m(-3)) does so largely by mixing. Water formed in the subtropics enters the equatorial region predominantly through the western boundary, while its interior transport is relatively small. The fresher North Pacific ESTMW and Central Mode Water (CMW) are also important sources of the 13 degrees C Water. The ratio of the southern versus the northern origins of the water mass is about 2 to 1 and tends to increase with time elapsed from its origin. Of the total volume of initially tracer-tagged water in the eastern equatorial Pacific, approximately 47.5% originates from depths above sigma(theta) = 25.8 kg m(-3) and 34.6% from depths below sigma(theta) = 26.6 kg m(-3), indicative of a dramatic impact of mixing on the route of subtropical water to becoming the 13 degrees C Water. Still only a small portion of the water formed in the subtropics reaches the equatorial region, because most of the water is trapped and recirculates in the subtropical gyre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb3+ chelate. N,N.N-1,N-1-12,6-bis(3'-aminomethyl-1'-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb3+ (BPTA-Tb3+), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2- aminoethylamino)-ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric quantum methods show that the nanoparticles are spherical and uniform in size, 45 +/- 3 nm in diameter, strongly fluorescent with fluorescence yield of 10% and a long fluorescence lifetime of 2.0 ms. The amino groups directly introduced to the nanoparticle's surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human alpha-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of (x-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10 ng ml(-1) to about 100 ng ml(-1) with the detection limit of 0.10 ng ml(-1). The coefficient variations (CVs) of the method are less than 9.0%. and the recoveries are in the range of 84-98% for human serum sample measurements. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherical Ru(bpy)(3)(2+)-doped silica (RuSi) nanoparticles were prepared via a water-in-oil microemulsion approach. The electrochemical and electrochemiluminescent properties of the RuSi nanoparticles immobilized on an indium tin oxide (ITO) electrode were investigated. Further, electrochemiluminescence (ECL) of the RuSi nanoparticles with covalently coated biomacromolecules was studied. By covalent cross-linking with glutaraldehyde, gamma-(aminopropyl) triethoxysilane (APTES)-pretreated RuSi nanoparticles were coupled with different concentrations of bovine serum albumin (BSA), hemoglobin, and myoglobin, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristics of intermediates of bacteriorhodopsin (bR) can be verified by chemical modification of its surroundings. CeO2 nanoparticles, which were obtained using water-in-oil (W/O) microemulsion and calcined at various temperatures, were used as chemical additive for the modification of bR. X-ray diffraction (XRD) shows that the mean particle sizes for the samples calcined at 500 and 800 degrees C are approximately 10 and 30 nm, respectively. We prepared CeO2 nanoparticle modified poly(vinyl alcohol) (bR-PVA) films with an optical density of about 1.5 at the ground state. It is observed that the lifetime of the Wintermediate for the modified films is prolonged compared with that of the unmodified ones, and the lifetime increases with decreasing particle size. A probable mechanism, which is likely to involve effective molecular interactions between the CeO2 nanoparticles and the bR molecules, is discussed. The hydroxyl groups, which might arise from the interaction between the nanoparticles and the surrounding water molecules, help to lower the ability of the Schiff base of uptaking protons in the Wintermediate. The results indicate that controlling the interactions between biomolecules and various nanomaterials would enlarge the functionality and the range of the application of nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europium-doped barium fluoride cubic nanocolumns were synthesized from the quaternary water in oil reverse microemulsions In this process, the aqueous cores of water/cetyl trimethyl ammonium bromide (CTAB)/n-butanol/n-octane reverse microemulsions were used as microreactors for the precipitation of europium doped barium fluoride. XRD analysis shows that under the dopant concentration of 0.06% (molar fraction), the products are single phase. The result products are cubic column-like with about 30 similar to 50 nm edge length of cross section, and about 200 nm of length obtained from the transmission electron microscopy (TEM), and atomic force microscopy (AFM). Under the 0.06 % (molar fraction) of dopant concentration I the fluorescence of Eu2+ and Eu3+ under the 589 of excitation wavelength is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective electrogenerated chemiluminescence (ECL) sensor was developed by coimmobilization of the Ru(bpy)(2)(3+)-doped silica (RuDS) nanoparticles and carbon nanotubes (CNTs) on glassy carbon electrode through hydrophobic interaction. The uniform RuDS nanoparticles were prepared by a water-in-oil (W/O) microemulsion method and Ru(bpy)(3)(2+) doped inside could still maintain its high ECL efficiency. With such unique immobilization method, a great deal of Ru(bpy)(3)(2+) was immobilized three-dimensionally on the electrode , which could greatly enhance the ECL response and result in the increased sensitivity. On the other hand, CNTs played dual roles as matrix to immobilize RuDS nanoparticles and promoter to accelerate the electron transfer between Ru(bpy)(3)(2+) and the electrode. The as-prepared ECL sensor displayed good sensitivity and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investiges the effect of pipe diameter on flow pattern transition boundary in oil water vertical flows, and proposes a model to determine the maximum inner diameter (D_{infty s}) of a pipe in which the slug flow would not occur When pipe inner diameter D>D_{infty s}, only bubble flow exists, while D