23 resultados para water flux


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous cores and dating show the Yangtze River has accumulated about 1.16 x 10(12) t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated (similar to 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from similar to 40 in thickness between the 20 and 30 m water depth to < 1-2 in between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 x 10(11) m(3), equivalent to similar to 5.4 x 10(11) t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 x 10(12) t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as fanning and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a report of the study of the authigenic sulfide minerals and their sulfur isotopes in a sediment core (NH-1) collected on the northern continental slope of the South China Sea, where other geophysical and geochemical evidence seems to suggest gas hydrate formation in the sediments. The study has led to the findings: (1) the pyrite content in sediments was relatively high and its grain size relatively large compared with that in normal pelagic or hemipelagic sediments; (2) the shallowest depth of the acid volatile sulfide (AVS) content maximum was at 437.5 cm (> 2 mu mol/g), which was deeper than that of the authigenic pyrite content maximum (at 141.5-380.5 cm); (3) delta S-34 of authigenic pyrite was positive (maximum: +15 parts per thousand) at depth interval of 250-380 cm; (4) the positive delta S-34 coincided with pyrite enrichment. Compared with the results obtained from the Black Sea sediments by Jorgensen and coworkers, these observations indicated that at the NH-1 site, the depth of the sulfate-methane interface (SMI) would be or once was at about 437.5-547.5 cm and the relatively shallow SMI depth suggested high upward methane fluxes. This was in good agreement with the results obtained from pore water sulfate gradients and core head-space methane concentrations in sediment cores collected in the area. All available evidence suggested that methane gas hydrate formation may exist or may have existed in the underlying sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The typology and flux of settling particulate matter (SPM) were investigated based on sediment trap sampling at six typical stations in the Yellow Sea and the East China Sea. The settling particulate matter in the neritic seas was sorted into three categories, lithogenic particles, living organisms, and particle aggregates. The mass of individual organisms is an important portion of particulate matter in the neritic waters. The aggregates contain six types, mucus aggregates, fecal pellets, diatom aggregates, silicoflagellate aggregates, tintinnids, and miscellaneous aggregates, of which the silicoflagellate aggregates and tintinnids are the most abundant in the Yellow Sea and the East China Sea. High particle fluxes, such as 215 to 874 g m(-2). day(-1) SPM in the bottom layer, were found at three stations where the water was well mixed, and the maximum flux was detected in the boundary area between the Yellow Sea and the East China Sea, where a wide nepheloid layer was present. Hence, particle flux in neritic waters can be easily shifted by water turbulence. The net vertical flux (123 to 961 mg C day(-1)), the contribution of lateral advection to resuspension flux (5 to 76%), and the particulate organic carbon export ratio (18 to 60%) were estimated for the other three stations where the water was stratified. The highest values were all found in the upwelling area off the Zhejiang coast, suggesting that the area of high productivity provides a high net vertical flux of SPM. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The obduction of equatorial 13 degrees C Water in the Pacific is investigated using a simulated passive tracer of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The result shows that the 13 degrees C Water initialized in the region 8 degrees N-8 degrees S, 130 degrees-90 degrees W enters the surface mixed layer in the eastern tropical Pacific, mainly through upwelling near the equator, in the Costa Rica Dome, and along the coast of Peru. Approximately two-thirds of this obduction occurs within 10 years after the 13 degrees C Water being initialized, with the upper portion of the water mass reaching the surface mixed layer in only about a month. The obduction of the 13 degrees C Water helps to maintain a cool sea surface temperature year-round, equivalent to a surface heat flux of about -6.0 W m(-2) averaged over the eastern tropical Pacific (15 degrees S-15 degrees N, 130 degrees W-eastern boundary) for the period of integration (1993-2006). During El Nino years, when the thermocline deepens as a consequence of the easterly wind weakening, the obduction of the 13 degrees C Water is suppressed, and the reduced vertical entrainment generates a warming anomaly of up to 10 W m(-2) in the eastern tropical Pacific and in particular along the coast of Peru, providing explanations for the warming of sea surface temperature that cannot be accounted for by local winds alone. The situation is reversed during La Nina years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of data collected in the Jiaozhou Bay in June and July 2003, the DIC distribution in seawater is studied, and an average air-sea flux of CO2 is estimated. The results show that the content of DIC inside the bay is markedly higher than outside the bay in June, but the content of DIC outside the bay is markedly higher than inside the bay in July. The trend of DIC distribution inside the bay is similar, viz. the content is the maximum in the northeast, then decreases gradually toward the west, and the content is the minimum in the west. The total trend of vertical distribution is to increase gradually from surface to bottom. This characteristic of DIC distribution is determined by Jiaozhou Bay hydrology and there is a close relation between DIC and particulate N,P. Average CO2 flux across the air-sea interface is 0.55 mol/(m(2.)a) in June and 0.72 mol/(m(2.)a) in July. Jiaozhou Bay is considered as a net annual source for atmospheric CO2 in June and July, and the total CO2 flux from seawater into atmosphere is about 740 t in June and 969 t in July.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we conducted eddy covariance (EC) measurements of water vapor exchange over a typical steppe in a semi-arid area of the Inner Mongolia Plateau, China. Measurement sites were located within a 25-year-old enclosure with a relatively low leaf area index (similar to 1. 5 m(2) m(-2)) and dominated by Leymus chinensis. Energy balance closure was (H + LE) = 17.09 + 0.69 x (Rn - G) (W/m(2); r(2) = 0.95, n = 6596). Precipitation during the two growing seasons of the study period was similar to the long-term average. The peak evapotranspiration in 2004 was 4 mm d(-1), and 3.5 mm d(-1) in 2003. The maximum latent heat flux was higher than the sensible heat flux, and the sensible heat flux dominated the energy budget at midday during the entire growing season in 2003; latent heat flux was the main consumption component for net radiation during the 2004 growing season. During periods of frozen soil in 2003 and 2004, the sensible heat flux was the primary consumption component for net radiation. The soil heat flux component was similar in 2003 and 2004. The decoupling coefficient (between 0.5 and 0.1) indicates that evapotranspiration was strongly controlled by saturation water vapor pressure deficit (VPD) in this grassland. The results of this research suggest that energy exchange and evapotranspiration were controlled by the phenology of the vegetation and soil water content. In addition, the amount and frequency of rainfall significantly affect energy exchange and evapotranspiration upon the Inner Mongolia plateau. (c) 2007 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q(10)) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q(10) decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m(-2). Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.