54 resultados para vesicles
Resumo:
We describe one new enchytraeid species, Fridericia liangi sp. nov., from Mt. Changbaishan, Jilin Province, northeastern China. It was collected from soils at the foot of Changbaishan Mountain and is distinguished from all known congeners by the following combination of characters: 1) no lateral chaetae, only ventral chaetae throughout, 2) a maximum of four chaetae in ventral preclitellar bundles, 3) one chaeta in ventral postclitellar bundles, 4) dorsal pores from VII on, 5) esophageal appendages unbranched, 6) coelomocytes without refractile vesicles, 7) clitellum girdle shaped, well developed, 8) no subneural glands, and 9) spermathecae simple.
Resumo:
Fridericia dianchiensis, a new enchytraeid species collected from Yunnan Province, is described here. It is characterized by a combination of the following characters: 1) lateral bundles containing maximum 3 chaetae; 2) esophageal appendages with 3-4 simple, terminal branches; 3) dorsal vessel originating in XX-XXIII; 4) sub-neural glands absent; 5) seminal vesicle large, occupying two segments; 6)clitellum girdle-shaped or gland cells absent between bursal slits and pre-middle ventrally; 7) coelomocytes without refractile vesicles, 8) spermatheca without diverticula and both ampullae broadly united; and 9) long spermathecal ectal duct without gland at the orifice.
Resumo:
Gas vesicles provide buoyancy to Microcystis and other common cyanobacterial bloom-forming species. gvpA and gvpC are structural genes encoding gas vesicle proteins. Phylogenetic analyses of 10 Microcystis strains/uncultured samples showed that gvpC and each intergenic segment of the gvpA-gvpC region can be divided into two types. The combination of different types of gvpC and intergenic segments is an important factor that diversifies this genomic region. Some Microcystis strains isolated in China possess a 172 to 176 bp sequence tag in the intergenic segment between gvpA and gvpC. The gvpA-gvpC region in Microcystis can be divided into at least 4 classes and more numbers of subclasses. Compared to rbcLX and other regions, the high variability of the gvpA-gvpC region should be more useful in identifying geographical isolates or ecotypes of Microcystis.
Resumo:
Oocyte maturation and egg fertilization in both vertebrates and invertebrates are marked by orchestrated cytoplasmic translocation of secretory vesicles known as cortical granules. It is thought that such redistribution of cellular content is critical for asymmetrical cell division during early development, but the mechanism and regulation of the process is poorly understood. Here we report the identification, purification and cDNA cloning of a C-type lectin from oocytes of a freshwater fish species gibel carp (Carassius auratus gibelio). The purified protein has been demonstrated to have lectin activity and to be a Ca2+-dependent C-type lectin by hemagglutination activity assay. Immunocytochemistry revealed that the lectin is associated with cortical granules, gradually translocated to the cell surface during oocyte maturation, and discharged to the egg envelope upon fertilization. Interestingly, the lectin becomes phosphorylated on threonine residues upon induction of exocytosis by fertilization and returns to its original state after morula stage of embryonic development, suggesting that this posttranslational modification may represent a critical molecular switch for early embryonic development. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
By employing poly(ethylene glycol) (PEG) shielding and a polymer cushion to achieve air stability of the lipid membrane, we have analyzed PEG influence on dried membranes and the interaction with cholesterol. Small unilamellar vesicles (SUVs) formed by the mixture of 1,2-dimyristoylphosphatidylcholine (DMPC) with different molar fraction of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000)) adsorb and fuse into membranes on different polymer-modified silicon dioxide surfaces, including chitosan, poly(L-lysine) (PLL), and hyaluronic acid, Dried membranes arc further examined by ellipsometer and atomic force microscopy (AFM). Only chitosan can support a visible and uniform lipid array. The thickness of dry PEGylated lipid membrane is reduced gradually as the molar fraction of PEG increases. AFM scanning confirms the lipid membrane stacking for vesicles containing low PEG, and only a proper amount of PEG can maintain a single lipid hi lover; however, the air stability of the membrane will be destroyed if overloading. PEG. Cholesterol incorporation can greatly improve the structural stability of lipid membrane, especially for those containing high molar fraction of PEG. Different amounts of cholesterol influence the thickness and surface morphology of dried membrane.
Resumo:
Self-assembly of binary blends of two triblock copolymers of poly(4-vinyl pyridine)-b-polystyrene-b-poly(4-vinyl pyridine), i.e., P4VP(43)-b-PS260-b-P4VP(43) (P1) and P4VP(43)-b-PS366-b-P4VP(43) (P2), in dioxane/water solution was studied. These two triblock copolymers individually tend to form vesicles (P2) and cylindrical micelles (P1) in dilute solution. It was found that copolymer components in the blend, sample preparation method, and annealing time had significant effect on hybridization aggregate morphology. By increasing P1 content in the copolymer blends, fraction of looped and stretched cylinders increased, while fraction of bilayers decreased. Nearly no bilayer was observed when P1 content was above 85 wt%.
Resumo:
We studied the self-assembly of polydisperse diblock copolymers under various confined states by Monte Carlo simulation. When the copolymers were confined within two parallel walls, it was found that the ordered strip structures appeared alternately with the increase in wall width. Moreover, the wall width at which the ordered structure appeared tended to increase with an increase in the polydispersity index (PDI). On the other hand, the simulation results showed that the copolymers were likely to form ordered concentric strip structures when they were confined within a circle wall.
Resumo:
We have studied the self-assembly of the ABA triblock copolymer (P4VP-b-PS-b-P4VP) in dilute solution by using binary block-selective solvents, that is, water and methanol. The triblock copolymer was first dissolved in dioxane to form a homogeneous solution. Subsequently, a given volume of selective solvent was added slowly to the solution to induce self-assembly of the copolymer. It was found that the copolymer (P4VP(43)-b-PS366-b-P4VP(43)) tended to form spherical aggregate or bilayer structure when we used methanol or water as the single selective solvent, respectively.
Resumo:
In this study, varieties of lipid bilayer-protected gold nanoparticles (AuNPs) were synthesized through a simple wet chemical method, and then the effect of freeze-thawing on the as-prepared AuNPs was investigated. The freeze-thawing process induced fusion or fission of lipid bilayers tethered on the AuNPs. The UV-vis spectra and transmission electron microscopy experiments revealed that the disruption of lipid bilayer structures on the nanoparticles led to the fusion or aggregation of AuNPs.
Resumo:
We propose a simple but efficient, rapid, and quantitative ion-responsive micelle system based on counter-anion exchange of a surfactant with an imidazolium unit. The ion-exchange reaction results in the amphiphilic-to-hydrophobic transition of the imidazolium salt, leading to the destruction of the micelles, which has been successfully applied to control led release and emulsification.
Resumo:
The effect of the hydrophobic properties of blocks B and C on the aggregate morphologies formed by ABC linear triblock copolymers in selective solvent was studied through the self-consistent field theory. Five typical micelles, such as core-shell-corona, hamburger-like, segmented-wormlike, were obtained by changing the hydrophobic properties of blocks B and C. The simulation results indicate that the shape and size of micelle are basically controlled by the hydrophobic degree of the middle block B, whereas the type of micelle is mainly determined by the hydrophobic degree of the end block C.
Resumo:
In this contribution, we report a facile, gram-scale, low-cost route to prepare monodisperse superparamagnetic single-crystal magnetite NPs with mesoporous structure (MSSMN) via a very simple solvothermal method. The formation mechanism of MSSMN is also discussed and we think that Ostwald ripening probably plays an important role in this synthesis process. It is also interestingly found that the size and morphology of mesoporous Fe3O4 NPs can be easily controlled by changing the amount of NaOH and 1,2-ethylenediamine (ETH). Most importantly, the MSSMN can be used as an effective drug delivery carrier. A typical anticancer drug, doxorubicin (Dox), is used for drug loading, and the release behaviors of Dox in two different pH solutions are studied. The results indicate that the MSSMN has a high drug loading capacity and favorable release property for Dox; thus, it is very promising for the application in drug delivery.
Resumo:
This paper described a double-chained cationic surfactant, didodecyldimethylammonium bromide (DDAB). for dynamic surface modification of poly(dimethylsiloxane) (PDMS) microchips to reduce the fluorescent dyes adsorption onto the microchannel. When DDAB with a high concentration was present as the dynamic modification reagent in the running and sample buffer, it not only reversed the direction of electroosmotic flow, but also efficiently suppressed fluorescent dyes pyronine Y (PY) or rhodamine 8 (RB) adsorption onto the chip surface. In addition, vesicles formed by DDAB in the buffer with higher surface charge density and electrophoretic mobility could provide wider migration window and potential for the separation of compounds with similar hydrophobicity. Factors affecting modification, such as pH and concentrations of the buffer, DDAB concentration in the buffer were investigated. Compared with commonly used single-chained cetyltrimethylammonium bromide, DDAB provided a better modification performance.
Resumo:
A facile approach to the preparation of light-responsive copolymer micelles is developed. This approach is based on the attachment of hydrophobic groups to one block of a diblock copolymer via a light-sensitive linkage. The micelles can be dissociated under light irradiation and release the encapsulated pyrene. The obtained polymeric micelles are expected to be of use as drug-delivery vehicles.
Resumo:
We have studied, both experimentally and theoretically, the aggregation morphology of the ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property. Experimental results showed that the micellar morphology changed from spheres to rods and then to vesicles by changing the common solvent from N-N-dimethylformamide (DMF) to dioxane and then to tetrahydrofuran (THF). These controllable aggregates were also obtained by Monte Carlo simulation. The simulative results showed that the solvent property is a key factor that determines the copolymer aggregation morphology. The morphology changed from spheres to rods and then to vesicles by increasing the solvent solubility, corresponding to the change of stretched of the copolymer chains in the micellar cores. This result is in good agreement with the experimental one. Moreover, the simulative results revealed that the end-to-end distant of the ABA triblock copolymer in the vesicle was larger than that in the spheres and rods, indicating that the copolymer chains were more stretched in vesicles than in the spheres and rods. Furthermore, we gave the distribution of the fraction of the chain number with the end-to-end distance. The results indicated that the amount of folded chains is almost the same as that of stretched chains in the vesicle. Although most chains were folded, stretched chains could be found in the rod and sphere micelles.