106 resultados para thermosensitive polymers
Resumo:
Two new stepladder conjugated polymers, that is, poly(7,7,15,15-tetraoctyldinaphtho[1,2-a:1',2'-g]-s-indacene) (PONSI) and poly(7,7,15,15-tetra(4-octylphenyl)dinaphtho[1,2-a:1',2'-g]-s-indacene) (PANSI) with alkyl and aryl substituents, respectively, have been synthesized and characterized. In comparison with poly(indenofluorene)s, both polymers have extended conjugation at the direction perpendicular to the polymer backbone because of the introduction of naphthalene moieties. The emission color of the polymers in film state is strongly dependent on the substituents. While PONSI emits at a maximum of 463 nm, PANSI with the same backbone but aryl substituents displays dramatically redshifted emission with a maximum at 494 nm.
Resumo:
In the past decades, 4-phenylethynyl phthalic anhydride (4-PEPA) has been the most important endcapper used for thermoset polyimide. As the isomer of 4-PEPA, 3-phenylethynyl phthalic anhydride (3-PEPA) has attracted our interest. In this article, 3-PEPA was synthesized and a comparative study with 4-PEPA on curing temperature, curing rate, thermal and mechanical properties of oligomers and cured polymers was presented. The new phenylethynyl endcapped model compound, N-phenyl-3-phenylethynyl phthalimide, was synthesized and characterized.
Resumo:
A series of donor-acceptor low-bandgap conjugated polymers, i.e., PTnBT (n = 2-6), composed of alternating oligothiophene (OTh) and 2,1,3-benzothiadiazole (BT) units were synthesized by Stille cross-coupling polymerization. The number of thiophene rings in OTh units, that is n, was tuned from 2 to 6. All these polymers display two absorption bands in both solutions and films with absorption maxima depending on n. From solution to film, absorption spectra of the polymers exhibit a noticeable red shift. Both high- and low-energy absorption bands or P'F5BT and PT6BT films locate in the visible region, which are at 468 and 662 nm for PT5BT and 494 and 657 nm for PT6BT.
Resumo:
Three low bandgap conjugated polymers, i.e., PDTPBT-C8, PDTPBT-C6 and PDTPBT-C5, which consist of alternating N-alkyl dithieno[3,2-b: 2',3'-d] pyrrole and 2,1,3-benzothiadiazole units and carry 1-octylnonyl, 1-hexylheptyl and 1-pentylhexyl as side chains, respectively, were synthesized. These polymers show strong absorption in the wavelength range of 600-900 nm with enhanced absorption coefficient as the length of alkyl chain decreases. The film morphology of the polymers and 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C-61 (PCBM) blends is also dependent on the alkyl chain length. As the length decreases, the film becomes more uniform and the domian size decreases from 400-900 nm for PDTPBT-C8 to similar to 50 nm for PDTPBT-C5.
Resumo:
In the mixed-metal complex catena-poly[bis[diaquasilver(I)] [bis[aquacopper(II)]-mu(3)-pyridine-2,5-dicarboxylato-2': 1: 1'kappa N-5,O-2: O-5: O-5, O-5'-mu-pyridine-2,5-dicarboxylato-2: 1 kappa(4) N, O-2: O-5, O-5'-disilver(I)-mu(3)-pyridine-2,5-dicarboxylato-1: 1': 2 '' kappa(5) O-5, O-5': O-5: N, O-2-mu pyridine-2,5-dicarboxylato-1': 20 ''kappa(4) O-5, O-5': N, O-2] hexahydrate], {[Ag(H2O)(2)][AgCu(C7H3NO4)(2)(H2O)] center dot 3H(2)O}(n), a square-pyramidal Cu-II center is coordinated by two N atoms and two O atoms from two pyridine-2,5-dicarboxylate (2,5-pydc) ligands and a water molecule, forming a [Cu(2,5-pydc)(2)-( H2O)](2-) metalloligand. One Ag I center is coordinated by five O atoms from three 2,5-pydc ligands and, as a result, the [Cu(2,5-pydc)(2)(H2O)](2-) metalloligands act as linkers in a unique mu(3)-mode connecting Ag-I centers into a one-dimensional anionic double chain along the [101] direction.
Resumo:
Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.
Resumo:
An artificial oxygen carrier is constructed by conjugating hemoglobin molecules to biodegradable micelles. Firstly a series of triblock copolymers (PEG-PMPC-PLA) in which the middle block contains pendant propargyl groups were synthesized and characterized. After the amphiphilic copolymer was self-assembled into core-shell micelles in aqueous solution, azidized hemoglobin molecules protected by carbon monoxide (CO) were conjugated to the micelles via click reaction between the propargyl and azido groups. The conjugation causes an increase of the micelle's mean diameter. Maximum conjugation ratio is 250 wt% in the hemoglobin-conjugated micelles (HCMs). Oxygen-binding ability of the HCMs was demonstrated by converting the CO-binding state of the HCMs into O-2-binding state.
Resumo:
Hyperbranched polymers with numerous pendent norbornene functionalities have been synthesized via the radical polymerization of a novel asymmetrical divinyl monomer hearing a higher reactivity methacrylate group and it lower reactivity norbornene group. Mediated by a rapid reversible addition-fragmentation chain transfer (RAFT) equilibrium, the concentration of polymeric chain radicals is decreased, and thus the gelation did not occur until higher monomer conversions (ca. 90%). An increase in reaction temperature call also significantly promote the formation of the hyperbranched structure owing to the decreased stability of the intermediate radicals derived from the norbornene group, which was confirmed by a model copolymerization system of two single vinyl monomers with similar structures to the vinyl groups in the asymmetrical divinyl monomer. Furthermore, Tri-SEC and conventional Sin-SEC as well as H-1 NMR.
Resumo:
Hyperbranched vinyl polymers were prepared by reversible addition-fragmentation chain transfer ( RAFT) polymerization of a styrenic asymmetric divinyl monomer. This was achieved by using cumyl dithiobenzoate or S-dodecyl-S'-(alpha,alpha'-dimethyl-alpha ''-acetic acid) trithiocarbonate as the chain transfer agent, 1,1'-azobis(cyclohexanecarbonitrile) or thermal initiation as a source of radicals. Cross-linking was inhibited by a rapid RAFT-based equilibrium between active propagation chains and dormant species, and thus a hyperbranched polymer with a monomer conversion as high as 80% was obtained. The hyperbranched structure and properties of the resultant polymers were characterized by a combination of H-1-NMR spectroscopy and a triple detection size exclusion chromatography (TRI-SEC). The hyperbranched vinyl polymer has a broad molecular weight distributions and a low Mark-Houwink exponent alpha value compared with the linear counterpart.
Resumo:
We have synthesized macrocyclic polystyrene- (PS-) terminated PS star polymers via a core-cross-linking approach in this work. A tadpole-shaped macrocyclic PS-linear-PS copolymer was synthesized at first via click chemistry and ATRP polymerization method. The "living" ATRP initiating chain-ends of the tadpole-shaped copolymers were linked together via ATRP polymerization with divinylbenzene to form a core-cross-linked macrocyclic star polymer. The number of arms attached to the macrocyclic star polymers was measured with NMR. and absolute molecular weights with gel permeation chromatography (GPC) with multiangle laser light scattering detector. These macrocyclic star polymers had a highly cross-linked core and many radiating arms. The shorter tadpole-shaped precursors caused core-cross-linked star polymers with higher molecular weights and more arm numbers. The macrocycle-terminated core-cross-linked star polymers showed two glass transition temperatures, one arising from the linear branches and another from the macrocycles.
Resumo:
The influence of the rigidity of polymer backbones on the side-chain crystallization and phase transition behavior was systematically investigated by a combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and high-resolution solid-state nuclear magnetic resonance spectroscopy (NMR). DSC investigation indicated that the crystallization number of alkyl carbon atoms of the side chains grafted onto the rigid polymer backbone, poly(p-benzamide) (PBA), is much lower than that of the alkyl carbon atoms of the side chains grafted onto the flexible polymer backbone, poly(ethyleneimine) (PEI), implying that the conformational state of the polymer backbones has a strong effect on the side-chain crystallization behavior in comblike polymers. WAXD and FTIR results proved that these two comblike polymers pack into hexagonal (PBA18C) and orthorhombic (PEI18C) crystals, respectively, depending on the adjusting ability of the polymer backbones for particular conformational states. It was also found that the presence of the crystalline-amorphous interphase (delta = 31.6 ppm) in PBA18C detected by solid-state C-13 NMR spectroscopy can be attributed to the rigid PBA backbone, which restricts the mobility of the alkyl side chains.
Resumo:
Order-disorder transition (ODT) behavior in eicosylated polyethyleneimine (PEI20C) comblike polymer obtained by grafting n-eicosyl group on polyethyleneimine backbone was systematically investigated by the combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy as well as solid-state high resolution nuclear magnetic resonance (NMR) spectroscopy. DSC investigations showed two obvious transitions, assigned to the transitions (1) from orthorhombic to hexagonal and (2) from hexagonal to amorphous phase, respectively. These transitions are induced by the variations of alkyl side chain conformation and packing structure with temperature changing, which consequently lead to the destruction of original phase equilibrium. The ODT behavior can also be confirmed by spectroscopic methods like WAXD, FTIR and NMR. The ordered structure and the transition behavior of the alkyl side chains confined by the PEI backbone are obviously different from those of pristine normal alkanes. The transition mechanism of ODT and the origin of the phase transition behavior in PEI20C comblike polymer were discussed in detail in this paper.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
Reactions of Zn(BF4)(2) and pyridine-2,4-dicarboxylic acid (2,4-pydcH(2)) in the presence of 1,2-bis( 4-pyridyl) ethylene or 1,3-bis(4-pyridyl) propane under hydro(solvo) thermal conditions yielded two polymorphic metal-organic coordination polymers formulated as Zn-2(OH)(2)(2,4-pydc) (1 and 2). Polymorph 1 features a two-dimensional (2-D) layer-like structure that is constructed by 2,4-pydc ligands bridging between the Zn-OH-Zn double-chain units. Each single Zn-OH-Zn chain is composed of mu(2)-OH groups connecting trigonal bipyramidal and tetrahedral Zn centers. Polymorph 2 is a 3-D coordination polymer containing 2-D Zn-OH-Zn sheets that consist of mu(2)- and mu(3)-OH groups and trigonal bipyramidal Zn centers. The sheets are pillared by 2,4-pydc ligands to form an acentric structural architecture. 1 and 2 are rare examples that the two polymorphs exhibit a centrosymmetric 2-D coordination network and an acentric 3-D coordination network, respectively. The different structures lead to differences in photoluminescent properties and thermal stabilities for 1 and 2.