145 resultados para thermal regimes
Resumo:
应用有限元方法对层流等离子体射流不锈钢表面重熔工艺中的瞬态热物理现象进行了数值模拟研究.针对不同加热距离,确定了材料熔化和凝固过程中的瞬态温度场、温度梯度和凝固率的时间和空间分布特征.通过引入等效温度面积密度概念,研究了不锈钢重熔热处理的适合条件.结果表明,9~13mm的范围是较为适宜的加热距离,该结果与试验观察基本符合.
Resumo:
A new X-ray diffraction method for characterising thermal mismatch stress (TMS) in SiCw–Al composite has been developed. The TMS and thermal mismatch strain (TMSN) in SiC whiskers are considered to be axis symmetrical, and can be calculated by measuring the lattice distortion of the whiskers. Not only the average TMS in whiskers and matrix can be obtained, but the TMS components along longitudinal and radial directions in the SiC whiskers can also be deduced. Experimental results indicate that the TMS in SiC whiskers is compressive, and tensile in the aluminium matrix. The TMS and TMSN components along the longitudinal direction in the SiC whiskers are greater than those along the radial direction for a SiCw–Al composite quenched at 500°C.
Resumo:
A new failure mode is observed in circular brass foils induced by laser beam. The new failure is based on the following experimental facts : (1) the peripheries of the circular brass foils are fixed and the surfaces of the foils are radiated by laser beam ; (2) the laser beam used is considered to be non-Gaussian spatially, actually an approximately uniform distribution limited in a certain size spot ; (3) the pulse on time of laser beam should be 250 μs, i.e. so called long duration pulse laser. The failure process consists of three stages ; i.e. thermal bulging, localized shear deformation and perforation by plugging. The word reverse in reverse bulging and plugging mode means that bulging and plugging occur in the direction of incident laser beam. To study the newly-discovered type of failure quantitatively, analytical solutions for the axisymmetric temperature field and deflection curve are derived. The calculated results show that the newly discovered failure mode is attributed to the spatial structure effect of laser beam indeed.
Resumo:
It has long been known that various ignition criteria of energetic materials have been limited in applicability to small regions. In order to explore the physical nature of ignition, we calculated how much thermal energy per unit mass of energetic materials was absorbed under different external stimuli. Hence, data of several typical sensitivity tests were analyzed by order of magnitude estimation. Then a new concept on critical thermal energy density was formulated. Meanwhile, the chemical nature of ignition was probed into by chemical kinetics.
Resumo:
In the field of fluid mechanics, free surface phenomena is one of the most important physical processes. In the present research work, the surface deformation and surface wave caused by temperature difference of sidewalls in a rectangular cavity have been investigated. The horizontal cross-section of the container is 52 mmx42 mm, and there is a silicon oil layer of height 3.5 mm in the experimental cavity. Temperature difference between the two side walls of the cavity is increased gradually, and the flow on the liquid layer will develop from stable convection to un-stable convection. An optical diagnostic system consisting of a modified Michelson interferometer and image processor has been developed for study of the surface deformation and surface wave of thermal capillary convection. The Fourier transformation method is used to interferometer fringe analysis. The quantitative results of surface deformation and surface wave have been calculated from a serial of the interference fringe patterns.The characters of surface deformation and surface wave have been obtained. They are related with temperature gradient and surface tension. Surface deformation is fluctuant with time, which shows the character of surface wave. The cycle period of the wave is 4.8 s, and the amplitudes are from 0 to 0.55 mu m. The phase of the wave near the cool side of the cavity is opposite and correlative to that near the hot side. The present experiment proves that the surface wave of thermal capillary convection exists on liquid free surface, and it is wrapped in surface deformation.
Resumo:
The process of die swell in polymer jets is an important feature within polymer processing and can be explained through a study of its rheological effects. The existence of a thermocapillary effect, driven by the gradient of its surface tension, should be considered when examining a thermal jet that has a non-uniform temperature distribution on its free surface, as in various polymer processings. Both the rheological effect and thermocapillary effect on die swell can be studied numerically through a finite element method as used on a two-dimensional and unsteady model, in which a Coleman-Noll second-order fluid model is employed. The results show that the expanding angle depends on both the rheological property of the fluid and the pressure at the vessel exit. Although both the thermocapillary and the rheological effects contribute to the cross-section expansion of the fluid jet, the latter is more important in determining the expansion.
Resumo:
在单脉冲激波管上,研究了1,2-二氯乙烷的热裂解.实验的激波条件为:温度区间1020 K<T<1190 K, 压力: P=0.12 MPa,实验时间τ=0.5 ms;实验气体为1,2-二氯乙烷稀释于Ar气中(3.95 mmol/L).以4-甲基-1-环己烯作为对比速率法实验的内标物,用4-甲基-1-环己烯开环反应的速率常数k=1015.3exp(-33400/T) s-1,以及从其产物的浓度推定出实验温度.经激波加热后的实验气体的终产物用气相色谱分析出主要成分为C2H3Cl,指示出主要反应通道为β消去反应.如把所有产物C2H3Cl都归于β消去反应,则可推定出表观之反应速率常数k1a=5.0×1013exp(-30000/T) s-1.对于由C-Cl键断键反应引发的链反应的可能影响做了分析研究.用了一种简便分析可推知在实验的温度范围内的低端(1020 K)链反应的影响可以忽略,而在其高端(1190 K)链反应将给出10%的终产物C2H3Cl的附加浓度,获得真实的β消去反应速率常数则必须把这部分予以扣除.经过这样的校正之后,最后得到CH2ClCH2Clβ消去反应速率常数为k1c=2.3×1013exp(-29200/T) s-1.
Resumo:
An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.
Resumo:
A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier-Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052-2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349-377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369-398)'s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243-258)'s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.
Resumo:
The behaviour of gaseous chlorine and alkali metals of three sorts of biomass (Danish straw, Swedish wood, and sewage sludge) in combustion or gasification is investigated by the chemical equilibrium calculating tool. The ranges of temperature, air-to-fuel ratio, and pressure are varied widely in the calculations (T=400-1800 K, gimel=0-1.8, and P=0.1-2.0 MPa). Results show that the air excess coefficient only has less significant influence on the release of gaseous chlorine and potassium or sodium during combustion. However, in biomass gasification, the influence of the air excess coefficient is very significant. Increasing air excess coefficient enhances the release of HCl(g), KOH(g), or NaOH(g) as well as it reduces the formation of KCl(g), NaCl(g), K(g), or Na(g). In biomass combustion or straw and sludge gasification, increasing pressure enhances the release of HCl(g) and reduces the amount of KCI(g), NaCl(g), KCI(g), or NaOH(g) at high temperatures. However, during wood gasification, the pressure enhances the formation of KOH(g) and KCI(g) and reduces the release of K(g) and HCl(g) at high temperatures. During wood and sewage sludge pyrolysis, nitrogen addition enhances the formation of KCN(g) and NaCN(g) and reduces the release of K(g) and Na(g). Kaolin addition in straw combustion may enhance the formation of potassium aluminosilicate in ash and significantly reduces the release of KCl(g) and KOH(g) and increases the formation of HCl(g).
Resumo:
以激光熔凝表面强韧化处理为背景,应用空间的弹塑性有限单元和高精度的数值算法、同时考虑材料组织性能的变化来模拟材料的温度场。主要研究激光熔凝加工中瞬时温度场数值模拟,同时考虑相变潜热的影响,为第二步热应力场及残余应力的数值模拟做准备。最后用算例验证了模型的正确性,并给出了不同时刻温度场的分布。
Resumo:
Numerical simulation of thermal field was studied in laser processing. The 3-D finite element model of transient thermal calculation is given by thermal conductive equation. The effects of phase transformation latent are considered. Numerical example is given to verify the model. Finally the real example of transient thermal field is given.
Resumo:
气液两相流体系是一个复杂的多变量随机过程体系,流型的定义、流型过渡准则和判别方法等方面的研究是多相流学科目前研究的重点内容。本文就与气液两相流流型及其判别有关的研究状况进行了回顾和评述,力图反映近年来气液两相流流型及其判别问题研究的状态和趋势。