17 resultados para tenth alienation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of the compatibilizer polypropylene grafted with glycidyl methacrylate(PP-g-GMA) on the morphology, thermal, rheological and mechanical properties of polypropylene and polycarbonate blends (PP/PC) were studied. It was found that the addition of PP-g-GMA significantly changed their morphology. The mean size of domains reduced from 20 mu m to less than 5 mu m. The dispersed domain size is also strongly dependent upon the content of PP-g-GMA. The interfacial tension of PP/PC/PP-g-GMA (50/30/20) is only about one-tenth of PP/PC (70/30). The crystallization temperature of PP in PP/PC/PP-g-GMA is 5-8 degrees C higher than that of PP in PP/PC blends. Characterization studies based on mechanical properties, differential scanning calorimetry, rheology and morphological evidence obtained by using scanning electron microscopy support the hypothesis that an in-situ copolymer PP-g-PC was formed during the blending process. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research related to carbon geochemistry and biogeochemistry in the East China Sea is reviewed in this paper. The East China Sea is an annual net sink for atmospheric CO, and a large net source of dissolved inorganic carbon to the ocean. The sea absorbs CO, from the atmosphere in spring and summer and releases it in autumn and winter. The East China Sea is a CO, sink in summer because Changjiang River freshwater flows into it. The net average sea-air interface carbon flux of the East China Sea is estimated to be about 4.3 X 10(6) t/y. Vertical carbon transport is mainly in the form of particulate organic carbon in spring; more than 98% of total carbon is transported in this form in surface water, and the number exceeds 68% in water near the bottom. In the southern East China Sea, the average particulate organic carbon inventory was about one-tenth that of the dissolved organic carbon. Research indicates that the southern Okinawa Trough is an important site for particulate organic carbon export from the shelf. The annual cross-shelf exports are estimated to be 414 and 106 Gmol/y for dissolved organic carbon and particulate organic carbon, respectively. Near-bottom transport could be the key process for shelf-to-deep sea export of biogenic and lithogenic particles.