125 resultados para surface acoustic wave
Resumo:
A design of single-mode distributed feedback quantum cascade lasers (DFB-QCLs) with surface metal grating is described. A rigorous modal expansion theory is adopted to analyse the interaction between the waveguide mode and the surface plasmon wave for different grating parameters. A stable single-mode operation can be obtained in a wide range of grating depths and duty cycles. The single-mode operation of surface metal grating DFB-QCLs at room temperature for lambda = 8.5 mu m is demonstrated. The device shows a side-mode suppression ratio of above 20 dB. A linear tuning of wavelength with temperature indicates the stable single-mode operation without mode hopping.
Resumo:
We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.
Resumo:
A novel amperometric biosensor for quantification of the electrochemically inert polar organic solvents based on tyrosinase electrode was preliminarily reported. The biosensor was fabricated by simply syringing an aqueous solution of tyrosinase/PVAVP (PVAVP: copolymer of poly(vinyl alcohol) grafting with 4-vinylpyridine) onto glassy carbon electrode surface followed by drying the modified electrode at +4 degrees C in a refrigerator. The current generated from electrochemical reduction of quinone is a probe signal. The biosensor can be used for quantification of polar organic solvents, and its mechanism was characterized with in situ steady-state amperometry-quartz crystal microbalance experiments. The detection limit, sensitivity, and dynamic range for certain organic solvents are dependent on the kind and concentration of the substrate probe and the hydrophobicity of the immobilization matrix. The response time for all the tested organic solvents is less than 2 min.
Resumo:
Based on the effective medium approximation theory of composites, the empirical model proposed by Pandey and Kakar is remedied to investigate the microwave emissivity of sea surface under wave breaking driven by strong wind. In the improved model, the effects of seawater bubbles, droplets and difference in temperature of air and sea interface (DTAS) on the emissivity of sea surface covered by whitecaps are discussed. The model results indicate that the effective emissivity of sea surface increases with DTAS increasing, and the impacts of bubble structures and thickness of whitecaps layer on the emissivity are included in the model by introducing the effective dielectric constant of whitecaps layer. Moreover, a good agreement is obtained by comparing the model results with the Rose's experimental data.
Resumo:
Along with the widespread and in-depth applications in petroleum prospecting and development, the seismic modeling and migration technologies are proposed with a higher requirement by oil industrial, and the related practical demand is getting more and more urgent. Based on theories of modeling and migration methods for wave equation, both related with velocity model, I thoroughly research and develop some methods for the goal of highly effective and practical in this dissertation. In the first part, this dissertation probes into the layout designing by wave equations modeling, focusing on the target-oriented layout designing method guided by wave equation modeling in complicated structure areas. It is implemented by using the fourth order staggered grid finite difference (FD) method in velocity-stress 2D acoustic wave equations plus perfectly matched layer (PML) absorbing boundary condition. To design target-oriented layout: (a) match the synthetic record on the surface with events of subsurface structures by analyzing the snapshots of theoretical model; (b) determine the shot-gather distance by tracking the events of target areas and measuring the receiving range when it reaches the surface; (c) restrict the range of valid shot-gather distance by drawing seismic windows in single shot records; (d) choose the best trace distance by comparing the resolution of prospecting targets from the simulated records with different trace distance. Eventually, we obtained the observation system parameters, which achieve the design requirements. In the second part, this dissertation presents the practical method to improve the 3D Fourier Finite Difference (FFD) migration, and carefully analyzes all the factors which influence 3D FFD migration’s efficiency. In which, one of the most important parameters of migration is the extrapolating step. This dissertation presents an efficient 3D FFD migration algorithm, which use FFD propagator to extrapolate wavefields over big layers, and use Born-Kirchhoff interpolator to image wavefields over small layers between the big ones. Finally, I show the effectiveness of this hybrid migration method by comparing migration results from 3D SEG/EAGE model with different methods.
Resumo:
Acoustic Gravity waves (AGW) play an important role in balancing the atmospheric energy and momentum budget. Propagation of gravity wave in the atmosphere is one of the important factors of changing middle and upper atmosphere and ionosphere. The purpose of this dissertation is to study the propagation of gravity wave in a compression atmosphere whit means of numerical simulation and to analyze the response of middle and upper atmosphere to pulse disturbance from lower atmosphere. This work begins with the establishment of 2-D fully nonlinear compressible atmospheric dynamic model in polar coordinate, which is used ton numerically study gravity wave propagation. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. We also simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model and analyze the data we obtained by using Fourier Transform (FT), Short-time Fourier Transform (STFT) and Empirical Mode Decomposition (EMD) method which is an important part of Hilbert-Huang Transform (HHT). The research content is summarized in the following: 1. By using a two-dimensional full-implicit-continuous-Eulerian (FICE) scheme and taking the atmospheric basic motion equations as the governing equations, a numerical model for nonlinear propagation of acoustic gravity wave disturbance in two-dimensional polar coordinates is solved. 2. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. Results of numerical simulation show that the acoustic gravity wave packets propagate steadily upward and keep its shape well after several periods. 3. We simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model, and obtain the distribution of a certain physical quantity in time and space from earth’s surface to 300km above. The results reveal that the response of ionosphere occurs at a large horizontal distance from the source and the disturbance becomes greater with increasing of height. The situation when the direction of the background wind is opposite to or the same as the direction of disturbed velocity of gravity-wave is studied. The results show that gravity wave propagating against winds is easier than those propagating along winds and the background wind can accelerate gravity wave propagation. Just upon the source, an acoustic wave component with period of 6 min can be found. These images of simulation are similar to observations of the total electron content (TEC) disturbances caused by the great Sumatra-Andaman earthquake on December 26 in 2004. 4. Using the EMD method the disturbed velocity data of a certain physical quantity in time and space can be decomposed into a series of intrinsic mode function (IMF) and a trend mode respectively. The results of EMD reveal impact of the gravity wave frequency under the background winds.
Resumo:
The optoacoustic signal generated by pulsed 10.6 c infrared radiation incident upon a test cell filled with gaseous SF6 has been analyzed in detail. The effects ofm icroscopic energy transfer from the absorbing vibrational degrees of freedom, spontaneous emission, thermal conduction, and acoustic wave propagation are included. This complete treatment explains the experimental observations including a negative pressure response following irradiation at low gas pressure.
Resumo:
thermal conduction, and acoustic wave propagation are included. This
Resumo:
本文集收入了著名力学家、应用数学家、中国科学院院士谈镐生先生在流体力学、稀薄气体动力学和应用数学研究领域的论文和研究报告26篇,谈镐生先生倡导和支持力学基础研究的有关文章和论述21篇,谈先生的学术活动和生活图片多幅,以及谈镐生先生生平,最后附有谈先生生平年表。
目录
科技论文
Theaerodynamics of supersonic biplanes
Strength of reflected shock in Mach reflection
On laminar boundary layer over arotating blade
A unique law for ideal incompressible flow with preserved pattern off initeseparation
On motion of submerged cylinder
On source and vortex off luctuating strength U~aveling beneath a free surface
Wave sproduced by a pulsating source U~ave lingbeneath a free surface
On optimum nose Curves form issiles in the superaerodynamic regime
On optimum nose Curves for superaerodynamic missiles
On a special bolzavariational problem and the minimization of superaerodynamic
Hypersonic nose drag
Nose drag in free-molecule flow and its minimization
Final mdash;stagedecay of a single line vortex
Final stage decay of grid—produced turbulence
Resumo:
This paper presents the design and characterization of a fiber Fabry-Perot interferometer (FFPI) acoustic wave detector with its Q point being stabilized actively. The relationship between the reflectivity of the F-P cavity facets and cavity length was theoretically analyzed, and high visibility of 100% was realized by optimized design of the F-P cavity. To prevent the drifting of the Q point, a new stabilization method by actively feedback controlling of the diode laser is proposed and demonstrated, indicating the method is simple and easy operating. Measurement shows that good tracing of Q point was effectively realized. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
通过纳焦量级的飞秒激光在铬膜表面诱导出了周期性微结构,并使用入射飞秒激光和激发的表面等离子体波之间的干涉理论模拟分析了飞秒激光作用下铬膜表面的温度场分布情况,定性地解释了铬膜表面周期性微结构产生的机理。实验和理论结果有助于对飞秒激光和铬膜相互作用机制的理解。
Resumo:
In this paper, a pressure-gradient fiber laser hydrophone is demonstrated. Two brass diaphragms are installed at the end of a metal cylinder as sensing elements. A distributed feedback fiber laser, fixed at the center of the two diaphragms, is elongated or shortened due to the acoustic wave. There are two orifices at the middle of the cylinder. So this structure can work as a pressure-gradient microphone in the acoustic field. Furthermore, the hydrostatic pressure is self-compensated and an ultra-thin dimension is achieved. Theoretical analysis is given based on the electro-acoustic theory. Field trials are carried out to test the performance of the hydrophone. A sensitivity of 100 nm MPa-1 has been achieved. Due to the small dimensions, no directivity is found in the test.
Resumo:
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.
Resumo:
We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space-time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field. (C) 2009 Optical Society of America