32 resultados para suction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

综述了国内外已开展的海洋平台吸力式基础的离心模型试验研究,重点讨论了应用离心机模拟吸力式基础承载特性的研究现状。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we report on surface crystallization phenomena and propose a solution for the fabrication of long and robust tellurite glass fibers. The bulk tellurite glasses of interest were prepared by melting and quenching techniques. Tellurite glass preforms and fibers were fabricated by suction casting and rod-in-tube drawing methods, respectively. The surfaces of the tellurite bulk glass samples and of the drawn fibers prepared under different controlled atmospheres were examined by X-ray diffraction. When the tellurite glass fibers were drawn in ambient air containing water vapor, four primary kinds of small crystals were found to appear on the fiber surface, alpha-TeO(2), gamma-TeO(2), Zn(2)Te(3)O(8) and Na(2)Zn(3)(CO(3))(4)center dot 3H(2)O. A mechanism for this surface crystallization is proposed and a solution described, using an ultra-dry oxygen gas atmosphere to effectively prevent surface crystallization during fiber drawing. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为确定保水剂的合理用量,于2008年5月在陕西米脂县进行保水剂不同用量玉米盆栽试验研究。盆栽试验设置了保水剂不同用量(0、30、40、50、60 g)五个处理及保水剂与风干黄绵土配比用量(0、0.05%、0.10%、0.15%、0.20%、0.30%)6个处理,分别研究了保水剂不同用量与土壤水势、土壤含水量的关系及对土壤持水时间的影响。试验结果表明,土壤含水量高(>18%)时各处理土壤水吸力十分接近,在土壤吸水力相同时,随着保水剂用量的提高其土壤含水量也随着提高;保水剂用量越大的处理玉米存活的时间也越长,0.20%和0.30%处理玉米存活时间较对照长3 d;综合分析表明本试验中保水剂与黄绵土配比0.20%和0.3%应用效果较好。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤养分、污染物的生物有效性与其固液相分配规律密切相关。本研究通过室内模拟试验,设置不同的水、热、肥条件和培养时间序列,采用高速离心法对红壤、黑土、潮土、黑垆土、塿土5种典型土壤的磷素固液相分配规律及其影响因素进行了探讨。结果表明,质地不同土壤磷素固液相分配系数(Kd)值差别很大,整体变化趋势是红壤>黑垆土>塿土>黑土>潮土。不同培养条件下土壤磷素固液相分配系数(Kd)值变化特征表现出随着培养时间延长,土壤磷素Kd值增大,土壤磷素生物有效性逐渐降低。水吸力、浓度与之相反,随着水吸力的增加土壤磷素Kd值变小,随着施入磷素浓度的增加而Kd值降低。在整个温度梯度中,当温度处于20 ̄25℃左右时,土壤磷素Kd值达到最小值,液相磷素含量相对增多,养分有效性增强。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9. The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition. Both the mean wall pressure and the velocity profiles agree with those of the experimental data, which validates the simulation. The turbulent kinetic energy budget in the separation region is analyzed. Results show that the turbulent production term increases fast in the separation region, while the turbulent dissipation term reaches its peak in the near-wall region. The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation. Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble, the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance, but rather the instability of separation bubble.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对动载作用下分层土中单桶基础动承载特性、四桶基础动承载特性进行了离心机实验模拟,并对动载后桶基静承载力进行了模拟。结果表明:桶顶与粘土面相同时,有上覆粘土层条件下的桶基动力响应较无上覆粘土层条件下的孔压增长小,但沉陷大;桶顶与粘土层下的砂土面相同时比与粘土面相同时的响应大。桶基在动载后的静承载力得到提高。由于液化区的滤波和对动载的衰减作用,发生沉降的范围有限,离桶壁约一倍桶高距离。超孔隙水压从桶基边沿水平向逐渐衰减,从土面开始往下逐渐衰减到零。桶基周围砂土完全液化的厚度随载荷幅值的增加而增加,最大值约为桶高的40%。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用离心机法,研究聚丙烯酸钠与聚丙烯酰胺2种高分子化合物在5种使用浓度(占干土质量0、0.01%、0.08%、0.2%与1%)的条件下对3种土壤(砂土、壤土、黏土)持水能力的影响。结果表明:3种土壤在0.01~1.5MPa水吸力时,持水能力随着2种高分子材料用量的增加而增加,砂土的作用效果较壤土、黏土更显著;2种高分子材料与土壤质量比控制在8/10000~2/1000范围内其作用效果较好,该用量条件下高分子吸持水分平均可释放83.7%供植物吸收利用。2种高分子材料对土壤持水能力的作用效果基本相同。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以聚丙烯酰胺(PAM)与磷石膏(PG)为土壤结构改良剂,利用离心机法,测定土壤水分特征曲线,从分析土壤的吸水能力和持水能力的角度出发,研究土壤结构改良剂对土壤水分有效性的影响。研究结果表明,土壤的吸水能力、持水能力与释水能力均表现出与用量密切相关;在使用土壤结构改良剂的情况下,仍然可用van Genuchten方程很准确的模拟土壤吸力与含水率之间的关系,即可作为使用土壤结构改良剂后的土壤水分特征曲线的模拟表达式;在试验的用量范围内,土壤结构改良剂的使用不会影响植物对水分的吸收和利用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对欠平滑壁面上微小型爬壁机器人吸盘足吸附失败后的自主行为控制问题,根据机器人的结构设计及运动步态特点,提出基于主动试探的机器人吸盘足着地点自主选择步态控制方法。分析机器人的三种运动模式,以及直线运动和转向运动的基本步态。定义机器人的状态矢量,建立机器人吸盘足的有限状态机模型和状态转移图,并按"就近"原则设定状态转移函数的优先级。以上述研究为基础,提出在缺少壁面环境信息条件下的机器人步态控制主动试探方法。对步态控制方法进行仿真分析,并在实验室模拟环境和实际的飞机外表面环境进行试验验证,结果表明,所提出方法对于改善机器人的控制性能和提高机器人的自主能力是可行和有效的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

基于行星轮系运动及双足真空吸附原理,提出了一种新型爬壁机器人机构,介绍了机构的构型及结构特点,推导了运动学方程,分析了沿直线行走、平面旋转和跨越交叉壁面三种运动模式.仿真结果表明该机构具有移动速度快、运动灵活、跨越交叉壁面能力强等特点.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对一种小型的双足爬壁机器人,设计开发了基于DSP2812处理芯片的控制系统.该机器人系统采用双足真空吸盘式结构和用3个电机驱动5个关节的欠驱动结构.双足真空吸盘式结构使其可以在光滑的墙面和天棚行走,又能够在交接面之间完成跨步行走.而欠驱动结构减少了电机的数目,从而减小了机器人的尺寸和降低了机器人的质量和能量消耗,但它也给机器人的控制和运动规划带来了新的挑战.已完成的系统设计包括运动模式设计、关节控制、通信模块设计和吸盘足控制等.实验结果证明了所提出方案的可行性.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

提出了一种新型爬壁机器人机构,介绍了机构的构型及结构特点,推导了运动学正、逆解方程式,规划了直线行走、平面旋转及交叉面跨越三种运动模式.机构构型及运动模式的分析表明,该机构具有体积小、运动特性较好的特点.仿真结果证明,该机器人在运动过程中所需吸附力矩较小且占据的空间较少.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对腿足式爬壁机器人在壁面过渡时的步态规划问题,以一种真空吸附式双足爬壁机器人为研究对象,在步态分析的基础上,基于有限状态机建立了机器人的步态模型,进而提出了基于加权插值和BP神经网络的双足爬壁机器人壁面凹过渡在线步态规划算法,为提高机器人壁面过渡的自主控制能力奠定了基础.仿真分析和实验结果表明,该步态规划算法对于实际的机器人系统是有效的和可行的.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.