262 resultados para sowing mode
Resumo:
Resonant cavity modes in a torus with elliptical cross section are studied by means of a direct variational method. The nonlinear effects of toroidicity and ellipticity on the frequency of the basic mode are analyzed simply and systematically without the restriction of linear theory. It is shown that the toroidicity effect on the m = 0 transverse magnetic mode is less-than-or-equal-to 11%. The frequency of the mode shifts approximately 11-29% when the elongation of the cross section changes from 1 to 2. The effects of toroidicity and ellipticity differ for each resonant mode.
Resumo:
This paper points out that viscosity can induce mode splitting in a uniform infinite cylinder of an incompressible fluid with self-gravitation, and that the potential energy criterion cannot be appropriate to all normal modes obtained, i.e., there will be stable modes with negative potential energy (<0). Therefore the condition >0 is not necessary, although sufficient, for the stability of a mode in an incompressible static fluid or magnetohydrodynamics (MHD) system, which is a correction of both Hare's [Philos. Mag. 8, 1305 (1959)] and Chandrasekhar's [Hydrodynamic and Hydromagnetic Stability (Oxford U.P., Oxford, 1961), p. 604] stability criterion for a mode. These results can also be extended to compressible systems with a polytropic exponent.
Resumo:
The prediction of cracking direction in composite materials is of significance to the design of composite structures. This paper presents several methods for predicting the cracking direction in the double grooved tension-shear specimen which gives mixed-mode cracking. Five different criteria are used in this analysis: two of them have been used by other investigators and the others are proposed by the present authors. The strain energy density criterion proposed by G.C. Sih is modified to take account of the influence of the anisotropy of the strength on the direction of crack. The two failure criteria of Tsai-Hill and Norris are extended to predict the crack orientation. The stress distributions in the near-notch zone are calculated by using the 8-node quadrilateral isoparametric finite element method. The predictions of all the criteria except one are in good agreement with the experimental measurement. In addition, on the basis of the FEM results, the size of the zone in which the singular term is dominant is estimated.
Resumo:
boundary-layer flows, the skin friction and wall heat-transfer are higher and the
Resumo:
that the Stokes-interaction relation is reasonable qualitatively but not correct
Resumo:
thermal conduction, and acoustic wave propagation are included. This
Resumo:
Near threshold, mixed mode (I and II), fatigue crack growth occurs mainly by two mechanisms, coplanar (or shear) mode and branch (or tensile) mode. For a constant ratio of ΔKI/ΔKII the shear mode growth shows a self-arrest character and it would only start again when ΔKI and ΔKII are increased. Both shear crack growth and the early stages of tensile crack growth, are of a crystallographic nature; the fatigue crack proceeds along slip planes or grain boundaries. The appearance of the fracture surfaces suggest that the mechanism of crack extension is by developing slip band microcracks which join up to form a macrocrack. This process is thought to be assisted by the nature of the plastic deformation within the reversed plastic zone where high back stresses are set up by dislocation pile-ups against grain boundaries. The interaction of the crack tip stress field with that of the dislocation pile-ups leads to the formation of slip band microcracks and subsequent crack extension. The change from shear mode to tensile mode growth probably occurs when the maximum tensile stress and the microcrack density in the maximum tensile plane direction attain critical values.
Resumo:
Two local solutions, one perpendicular and one parallel to the direction of solar gravitational field, are discussed. The influence of gravity on the gas-dynamical process driven by the piston is discussed in terms of characteristic theory, and the flow field is given quantitatively. For a typical piston trajectory similar to the one for an eruptive prominence, the velocity of the shock front which locates ahead the transient front is nearly constant or slightly accelerated, and the width of the compressed flow region may be kept nearly constant or increased linearly, depending on the velocity distribution of the piston. Based on these results, the major features of the transient may be explained. Some of the fine structure of the transient is also shown, which may be compared in detail with observations.
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.
Resumo:
A recoverable plate impact testing technology has been used for studying the growth mechanisms of mode II crack. The results show that interactions of microcracks ahead of a crack tip cause the crack growth unsteadily. Failure mode transitions of materials were observed. Based on the observations, a discontinuous crack growth model was established. Analysis shows that the shear crack grows unsteady as the growth speed is between the Rayleigh wave speed c(R) and the shear wave speed c(s); however, when the growth speed approaches root 2c(s), the crack grows steadily. The transient microcrack growth makes the main crack speed to jump from subsonic to intersonic and the steady growth of all the sub-cracks leads the main crack to grow stably at an intersonic speed.
Resumo:
Diode-pumped passively mode-locked laser operation of Yb3+,Na+:CaF2 single crystal has been demonstrated for the first time. By using a SESAM ( semiconductor saturable mirror), simultaneous transform-limited 1-ps passively mode-locked pulses, with the repetition rate of 183MHz, were obtained under the self-Q-switched envelope induced by the laser medium. The average output power of 360mW was attained at 1047nm for 3.34W of absorbed power at 976nm, and the corresponding pulse peak power arrived at 27kW, indicating the promising application of Yb3+,Na+-codoped CaF2 crystals in achieving ultra-short pulses and high pulse peak power. (c) 2005 Optical Society of America.
Resumo:
Stimulated Raman scattering (SRS) of a relativistic laser in plasmas is studied in the framework of the standard equation set of a three-wave process. As far as every wave involved in the process is concerned, its evolution has two aspects: time-dependent amplitude and time-dependent frequency. These two aspects affect each other. Strict analysis and numerical experiment on the full three-wave equation set reveal that a fast growing mode of the instability, which could reach a balance or saturation point during a period far shorter than an estimation based on conventional analysis, could take place in a standard three-wave process without coupling with a fourth wave. This fast growing mode is found to stem from the constraint set by the background density on the amplitude of the driven Langmuir wave. The effect of various parameters on the development of the SRS instability is studied by numerical calculation of the history of the instability in different cases. (c) 2007 American Institute of Physics.