270 resultados para soil respiration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There was a positive correlation between the concentration of organic carbon and potential respiration as measured by carbon dioxide evolution (R-2 = 0.923) and oxygen consumption (R-2 = 0.986) in soil samples collected from the bottoms of drained ponds. This finding supports the frequent use of organic carbon analysis as an indicator of sediment respiration rate under optimal conditions in commercial aquaculture facilities. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Natural Science Foundation of China [30590381]; Knowledge Innovation Program of the Chinese Academy of Sciences [KZCX2YW-432]; International Partnership Project

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha(-1) year(-1); MN, 100 kg N ha(-1) year(-1); LN, 50 kg N ha(-1) year(-1)) on soil respiration compared with non-fertilization (CK, 0 kg N ha(-1) year(-1)), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q (10) varied within 1.70-1.74) but was slightly reduced in MN treatment (Q (10) = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July-September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007-June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m(-2) year(-1)). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July-September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise, the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha(-1), while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha(-1), was approximately twice that of the LG site. Soil respiration measurements - showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q(10) value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m(-2) y(-1) to the atmosphere, which was about one third more than the 1530g CO2 m(-2) y(-1) released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem. (C) 2003 Elsevier Ltd. All fights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文综述了全球碳循环研究、中国陆地生态系统碳循环研究及国内外草地生态系统碳循环研究的理论、方法、最新进展及主要成果。根据碱液吸收法对大针茅草原整个生长季土壤呼吸和地表凋落物分解的CO2排放速率的测定结果,分析了大针茅草原土壤呼吸和凋落物分解的CO2排放速率季节动态,并比较了二者对大针茅草原土壤呼吸和凋落物分解共同的CO2排放量的贡献。探讨了大针茅草原土壤呼吸和凋落物分解的CO2排放速率与各种生物因子、环境因子的关系,以及生物因子、环境因子对大针茅草原土壤呼吸和凋落物分解的CO2排放速率的协同作用;建立了土壤呼吸和凋落物分解的CO2释放速率与各种生物因子、环境因子及与它们的协同效应的回归模型。根据所建立的模型估算了大针茅草原土壤呼吸和凋落物分解CO2年排放速率。最后,计算了大针茅草原生态系统各碳库的贮量及它们之间的流量,建立了大针茅草原生态系统的碳循环模式,初步评价了大针茅草原目前对于大气碳库的源汇功能。 本文初步得出以下结论: 1)在整个观测期内,大针茅草原由土壤呼吸和地表凋落物分解的CO2排放速率的季节动态呈梯形曲线型,它在8月下旬达到最大值2.51gCm-2d-l; 2)大针茅草原土壤呼吸和凋落物分解速率的CO2排放速率季节变化趋势与地上生物量,尤其是地上绿色生物量部分的季节动态有一‘定同步性;地表凋落物层有减缓土壤向大气排放CO2的作用; 3)建立了大针茅草原土壤呼吸和凋落物分解速率的CO2排放速率y(gCm-2d-1)与绿色生物量x1(g)、降水量X2 (mm)的回归模型: Y= -1.556+0.0171 x+0.0169 X2 (当y≤1.5867时) Y= 0.6395 - 0.0059 x+0.0103 X2 (当y>1.5867时) 其相关系数r为0.9954。 4)根据建立的模型估算大针茅草原土壤呼吸和凋落物分解C02年排放速率为367.81gCm-2Y-1; 5)大针茅草原目前对于大气碳库来说是一个碳汇,它每年从大气中净吸收C02速率平均为147.5gCm-2Y-1。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

半干旱草原是脆弱的生态系统,长期受人类活动的强烈影响,受全球变化的作用本地区的气温可能有较大幅度的升高,而降水的变化较小,气候条件更加恶劣。本文根据时空代换的原理,选择主要受降水和人类活动控制的五种主要植物群落,包括羊草群落、大针茅群落、克氏针茅群落、羊草.冷蒿群落和沙蒿群落,从野外直接原状移栽到一起,分别在生长初期、前期、盛期和后期采用动态IRGA法测定了群落的气体交换特征。同时对主要植物种类的功能叶片的光合和蒸腾特征进行了同期测定。此外在野外用密闭室碱液吸收法直接动态测定了大针茅群落的土壤呼吸,并通过调查推算了流域内沙地和锡林河河谷湿地间在水资源利用和生产力方面的相互作用。在此基础上讨论了该区域生产力和碳素循环对气候变化可能图景的响应。文章认为气温升高而降水变化微弱的前景可能导致区域生产力的降低,在气候变化过程中该区域可能是碳源,但是气候稳定后碳素可能基本平衡。