59 resultados para soil CO2 emission


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potentilla fruticosa scrub, Kobresia humilis meadow and Kobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2emission rates from various treatments were 672.09+152.37 mgm-2h-1 for FC (grass treatment); 425.41+191.99 mgrn-2h-1 for FJ (grass exclusion treatment); 280.36+174.83 mgrn-2h-1 for FL (grass and roots exclusion treatment); 838.95+237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48+205.67 mgm-2h-1for GC (grass treatment); 268.97 ±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilis meadow, Potentilla fruticosa scrub meadow and Kobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilis meadow,heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from G-G; 49% and 51%from GC. In addition, root respiration from Kobresia humilis meadow approximated 145 mgCO2m-2h-1,contributed 34% to soil respiration. During the experiment period, Kobresia humilis meadow and Potentilla fruticosa scrub meadow had a net carbon fixation of 111.11 grn-2 and 243.89 grn-2,respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission from Kobresia tibetica meadow, and more detailed analyses should be done in further research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

除植被冠层的光合作用之外,土壤的呼吸作用是陆地生态系统碳收支中最大的通量。土壤呼吸即使发生较小的变化也能显著地减缓或加剧大气中CO2浓度的增加,从而明显影响到全球气候变化。土壤呼吸速率变化与否以及变化的方向可以反映生态系统对环境变化的敏感程度和响应模式。尽管如此,土壤呼吸仍是一个为人们了解不多的生态系统过程。 草地生态系统是陆地生态系统的一个重要组成部分。针对草地土壤呼吸进行野外实验研究和相应方法论的探讨将对区域乃至全球碳源汇性质的准确估算具有重要的科学意义。然而,近几年来关于草地土壤呼吸的主要研究工作都集中在温带草原和部分热带草原,而针对高寒草甸生态系统土壤呼吸的研究报道还很少。 2008年4月至2009年4月期间,我分别在2008年6、8、10、12月和2009年2月和4月分6次对川西北的典型高寒草甸群落的土壤呼吸进行观测,分析了不同类型高寒草甸群落土壤呼吸的季节变化特征以及环境因子和放牧模式对其影响。主要研究结果如下: 1)该地区高寒草甸生态系统在生长季(6月~8月)土壤呼吸速率较大(6.07~9.30μmolCO2¡m-2¡s-1 ) , 在非生长季( 12 月~ 2 月) 较小( 0.16 ~0.49μmolCO2¡m-2¡s-1 ) 。土壤CO2 年累积最大释放量为3963 ~ 5730gCO2¡m-2¡yr-1,其中,生长季土壤CO2的释放量占年总释放量的85%~90%。非生长季占10%~15%。非生长季所占比例略小于冬季积雪覆盖地区的冬季土壤呼吸占年土壤呼吸量的比例(14%~30%)。温度,尤其地温,是影响该地区高寒草甸生态系统土壤呼吸速率的最主要环境因子。土壤呼吸速率与地上生物量和土壤水分之间没有显著相关性,但是土壤含水量过大会导致土壤呼吸速率下降。 2)在观测期内,草丘区的土壤呼吸显著高于对照区的土壤呼吸,其最大土壤呼吸速率为16.77μmolCO2¡m-2¡s-1,土壤CO2 年累积最大释放量为8145gCO2¡m-2¡yr-1,是对照区的近2 倍。由于草丘在高寒草甸中占有较大的面积比例(近30%),因此,它将对高寒草甸生态系统的碳循环起着重要的作用。 3)放牧模式不仅可以影响高寒草甸群落的土壤CO2 排放,而且还可以改变土壤呼吸的温度敏感性(Q10)。本研究表明,在生长季有长期放牧活动干扰时将会增加土壤向大气中释放二氧化碳的速度,促使土壤碳库中碳的流失。禁牧样地的土壤呼吸速率在刚禁牧时先迅速增大,随着禁牧时间的延长土壤呼吸速率将会下降。此外,与其它放牧模式相比,冬季放牧将高寒草甸群落土壤呼吸速率在生长季达到最大值的时间明显向后推迟。不同放牧模式下高寒草甸群落土壤呼吸的Q10 值大小顺序为:禁牧一年群落>冬季放牧群落>禁牧三年群落>夏季放牧群落>自由放牧群落。 4)基于呼吸室技术的观测方法中,测量前的剪草处理可以明显改变该地区高寒草甸群落的土壤温度和土壤呼吸速率。在生长季,剪草处理将使土壤呼吸速率的瞬时响应增加90%左右。由于剪草处理明显增加了剪草样方白天的土壤温度,而土壤温度与土壤呼吸之间存在着极显著的指数相关关系,因而剪草处理导致土壤呼吸速率迅速增加。因此,在高寒地区基于呼吸室技术观测的土壤呼吸应当进行校正。 综上所述,川西北高寒草甸生态系统土壤呼吸速率在生长季较高,而在非生长季较低。土壤温度是影响该地区土壤呼吸的最主要环境因子。在实验观测期,草丘区土壤呼吸速率显著高于对照区的,是对照区土壤呼吸速率的近2倍。由于测量前的剪草处理可以明显改变待测点的土壤呼吸速率,因此,应对在高寒地区基于呼吸室技术观测的土壤呼吸进行校正。 Soil respiration is the second largest component (less than plant phtotosynthesis) of carbon dioxide flux between terrestrial ecosystems and the atmosphere. A minor change in soil respiration rate can significantly slow down or accelerate the increase of atmospheric CO2 concentration that is closely related to global climatic change. In turn, the change in the flux direction and rate of soil respiration may indicate the elasticity and stability of ecosystems to global changes and human disturbance. However, soil respiration is still an ecosystem process that has been poorly understood. Grassland ecosystem is an important component of the terrestrial ecosystem. Accurately estimating the CO2 flux from soil to atmosphere in situ is the key to evaluating the carbon resource and sink regionally or globally. Despite of extensive studies on the temperate and tropic grasslands, the soil respiration of alpine meadows has not substantially been measured. In the current study, soil respiration was measured for an annual cycle from April, 2008 to April, 2009 for the alpine meadow in northwestern Sichuan Province of China to determine the seasonal variation of soil respiration for the typical plant communities. The results are shown as follows: 1) Large seasonal variation of soil respiration was observed in the alpine meadow. The rate of soil respiration was the greatest (6.07~9.30μmolCO2¡m-2¡s-1) in June and the smallest (0.16 ~ 0.49μmolCO2¡m-2¡s-1) occurred from December to February in the non-growing season. The total emission of soil CO2 was estimated as 3963~5730 gCO2¡m-2¡yr-1, 85%~90% of which was released during the growing season, and 10%~15% during the non-growing season which was slightly less than the ratio of winter and annual CO2 flux from soil. Temperature, particularly the soil temperature, was the major environmental factor regulating the soil respiration. Significant and positive relationships were not found between soil respiration and soil moisture and between soil respiration and plant above-ground biomass, but excessive soil water content would decrease in the rate of soil respiration. 2) The rate of soil respiration in grass hummock communities was up to 16.77μmolCO2¡m-2¡s-1, which was about twice as great as in the controls (communities located in low and even sites). Considering the large proportion (about 30% on average) of hummock area in the meadow, it can be concluded that the hummocks played an important role in the carbon cycling of the study ecosystem. 3) Grazing patterns affected the flux of CO2 emission and the temperature sensitivity of soil respiration (Q10) in the alpine meadow. Grazing during growing season increased the rate of soil respiration. The rate of soil respiration increased significantly immediately after the alpine meadow being fenced, but thereafter decreased. In addition, grazing in winter delayed the peak respiration rate relative to the non-grazing mode. The Q10 value was the largest in the non-grazed area for one year, and next came the area with grazing in winter, followed by the non-grazed area for three years, the area with grazing in summer, and the non-limited grazed area. 4) In the chamber-based techniques, clipping manipulation before each measurement increased the transient rate of soil respiration by about 90% in the summer of the alpine meadow. As increase in soil temperature at daytime in the clipped plots by clipping and the exponential relationship between soil respiration and temperature, clipping manipulation led to increase in the rate of soil respiration. This suggested that a correction should be done for the techniques if employed in alpine and cold regions. In summary, the rate of soil respiration in the alpine meadow was the greatest in June and the smallest occurred from ecember to February in the non-growing season. Soil temperature was the major environmental factor regulating the soil respiration. The rate of soil respiration in grass hummock communities was up to 16.77μmolCO2¡m-2¡s-1, which was about twice as great as in the controls. A correction should be done for the techniques if employed in alpine and cold regions, because of the effect of clipping manipulation on soil temperature and respiration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2 flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2 uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00. Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1,19, 1.46 and 0.67 g CO2 m(-2) h(-1) for June, July, August and September, respectively. Diurnal fluctuation Of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m(-2). The total CO2 uptake by the ecosystem was up to 583 g CO2 m(-2) for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m(-2) h(-1) in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 eff lux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 eff lux appeared in April, with a value of 105 g CO2 m(-2). The total net CO2 eff lux for the whole non-growing season was 356 g CO2 m(-2).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise, the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha(-1), while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha(-1), was approximately twice that of the LG site. Soil respiration measurements - showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q(10) value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m(-2) y(-1) to the atmosphere, which was about one third more than the 1530g CO2 m(-2) y(-1) released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem. (C) 2003 Elsevier Ltd. All fights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon is an essential element for life, food and energy. It is also a key element in the greenhouse gases and therefore plays a vital role in climatic changes. The rapid increase in atmospheric concentration of CO_2 over the past 150 years, reaching current concentrations of about 370 ppmv, corresponds with combustion of fossii fuels since the beginning of the industrial age. Conversion of forested land to agricultural use has also redistributed carbon from plants and soils to the atmosphere. These human activities have significantly altered the global carbon cycle. Understanding the consequences of these activities in the coming decades is critical for formulating economic, energy, technology, trade, and security policies that will affect civilization for generations. Under the auspices of the International Geosphere-Biosphere Programme (IGBP), several large international scientific efforts are focused on elucidating the various aspects of the global carbon cycle of the past decade. It is only possible to balance the global carbon cycle for the 1990s if there is net carbon uptake by terrestrial ecosystems of around 2 Pg C/a. There are now some independent, direct evidences for the existence of such a sink. Policymarkers involved in the UN Framework Convention on Climate Change (UN-FCCC) are striving to reach consensuses on a 'safe path' for future emissions, the credible predictions on where and how long the terrestrial sink will either persist at its current level, or grow/decline in the future, are important to advice the policy process. The changes of terrestrial carbon storage depend not only on human activities, but also on biogeochemical and climatological processes and their interaction with the carbon cycles. In this thesis, the climate-induced changes and human-induced changes of carbon storage in China since the past 20,000 years are examined. Based on the data of the soil profiles investigated during China's Second National Soil Survey (1979-1989), the forest biomass measured during China's Fourth National Forest Resource Inventory (1989-1993), the grass biomass investigated during the First National Grassland Resource Survey (1980-1991), and the data collected from a collection of published literatures, the current terrestrial carbon storage in China is estimated to -144.1 Pg C, including -136.8 Pg C in soil and -7.3 Pg C in vegetation. The soil organic (SOC) and inorganic carbon (SIC) storage are -78.2 Pg C and -58.6 Pg C, respectively. In the vegetation reservoir, the forest carbon storage is -5.3 Pg C, and the other of-1.4 Pg C is in the grassland. Under the natural conditions, the SOC, SIC, forest and grassland carbon storage are -85.3 Pg C, -62.6 Pg C, -24.5 Pg C and -5.3 Pg C, respectively. Thus, -29.6 Pg C organic carbon has been lost due to land use with a decrease of -20.6%. At the same time, the SIC storage also has been decreased by -4.0 Pg C (-6.4%). These suggest that human activity has caused significant carbon loss in terrestrial carbon storage of China, especially in the forest ecosystem (-76% loss). Using the Paleocarbon Model (PCM) developed by Wu et al. in this paper, total terrestrial organic carbon storage in China in the Last Glacial Maximum (LGM) was -114.8 Pg C, including -23.1 Pg C in vegetation and -86.7 Pg C in soil. At the Middle Holocene (MH), the vegetation, soil and total carbon were -37.3 Pg C, -93.9 Pg C and -136.0 Pg C, respectively. This implies a gain of-21.2 Pg C in the terrestrial carbon storage from LGM to HM mainly due to the temperature increase. However, a loss of-14.4 Pg C of terrestrial organic carbon occurred in China under the current condition (before 1850) compared with the MH time, mainly due to the precipitation decrease associated with the weakening of the Asian summer monsoon. These results also suggest that the terrestrial ecosystem in China has a substantial potential in the restoration of carbon storage. This might be expected to provide an efficient way to mitigate the greenhouse warming through land management practices. Assuming that half of the carbon loss in the degraded terrestrial ecosystem in current forest and grass areas are restored during the next 50 years or so, the terrestrial ecosystem in China may sequestrate -12.0 Pg of organic carbon from the atmosphere, which represents a considerable offset to the industry's CO2 emission. If the ' Anthropocene' Era will be another climate optimum like MH due to the greenhouse effect, the sequestration would be increased again by -4.3 - 9.0 Pg C in China.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

陆地生态系统的呼吸作用是全球碳循环的一个主要通量和响应全球变化的一个潜在的重要正反馈机制。研究陆地生态系统的呼吸作用特征及其对生物环境因子的响应具有重要意义。本实验利用涡度相关技术对内蒙古库布齐沙漠两个不同土地利用类型的生态系统(人工种植杨树林和天然的油蒿灌丛)2006年生长季(4-10月)的生态系统呼吸特征进行比较研究,并分析了控制生态系统呼吸(Re)的生物与环境因子。结果表明:在这两种生态系统中Re存在着显著的日变化和季节变化,两个生态系统之间Re也存在着显著差异。Re日平均最大值分别2.0 mol CO2 m-2 s-1和1.7 mol CO2 m-2 s-1,都显著低于其他类似生态系统。杨树林和油蒿灌丛的生态系统Re与空气温度都表现出明显的指数相关关系,温度敏感指数Q10分别为1.11和1.12。两个生态系统的Re都与土壤水分含量呈显著的线性正相关关系,表明库布齐沙漠的生态系统的Re受到了土壤水分条件的限制。杨树林和油蒿灌丛生态系统呼吸Re都与叶面积指数的有线性回归关系,说明叶面积指数对生态系统呼吸有很好的指示作用。 本文还选择了两个生态系统内四种常见的土壤覆盖类型(分别是:杨树林生态系统的沙地SL和低洼地BL;油蒿灌丛生态系统的灌丛间BS和灌丛内WS),利用动态密闭气室测定了5-9月土壤呼吸的季节动态以及植株尺度的小尺度空间异质性。结果表明:1)不同土壤覆盖类型的土壤呼吸存在着很大的差异,其中低洼地BL和沙地SL分别有着最大和最小值,灌丛内WS的土壤呼吸要明显高于灌丛外BS。根生物量是导致它们之间差异的主要原因。2)土壤呼吸与土壤含水量之间的线性关系表明,土壤水分是两个生态系统土壤呼吸的限制因子。3)两个生态系统土壤呼吸存在着明显的小尺度差异,在靠近植株(0.5m内)地方的土壤呼吸的值明显高于距植株0.5m外的值,而0.5m外的土壤呼吸没有显著差异。小尺度土壤呼吸与根生物量之间明显的线性关系,说明根生物量是导致小尺度土壤呼吸差异的原因。本实验对沙漠生态系统的土壤呼吸和生态系统呼吸特征及其影响因子的研究,对准确的估计这一地区的碳收支有很大的帮助,为深入的理解干旱半干旱地区的生态系统碳循环提供了有价值的信息。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

依据黄土旱塬区黑垆土上中国科学院长武站长期定位试验(始于1984年),于2008年3月到6月,测定了冬小麦连作系统中返青期、拔节期、抽穗期、灌浆期和收获期土壤呼吸日变化、生育期变化以及土壤可溶性有机碳(Dissolved organic C,DOC)和微生物量碳(Soil microbial biomass C,MBC),研究了施肥措施对土壤呼吸、DOC和MBC的影响以及土壤呼吸与碳组分之间的关系。研究涉及6个处理:休闲地(F)、不施肥(CK)、有机肥(M)、氮肥(N)、氮磷肥(NP)和氮磷有机肥(NPM)。结果表明,冬小麦连作系统中土壤呼吸的日变化格局呈单峰曲线,最高值出现在12:00左右(拔节期)和14:30左右(成熟期),最小值出现在0:00~3:00之间或6:00左右;冬小麦土壤呼吸速率拔节期最高,其次是灌浆后期,抽穗期最低;不同施肥条件下,各生育期土壤呼吸速率大小顺序:NPM>M>NP>N>CK>F。土壤水分亏缺是导致抽穗期和灌浆期土壤呼吸速率降低的重要原因。各施肥处理DOC含量高低顺序为灌浆期>抽穗期>成熟期>返青期>拔节期;除M,NPM处理MBC含量拔节期>灌浆期外,各施肥处理MBC含量高低顺序...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Naphthene is generally considered difficult to convert in traditional pyrolysis, but the ring rupture becomes fairly easy with the presence of oxygen in the gas phase oxidative cracking of the model compound, cyclohexane. About 86.8% conversion of cyclohexane, 43.7% yield of light alkenes, 6.6% yield of benzene and 14.3% yield of CO could be obtained at 750 degreesC, at which temperature the pyrolysis of cyclohexane was negligible, while at 850 degreesC, the total yield of alkenes, benzene and CO was as high as 80% (50%, 12% and 18%, respectively) with 98% conversion of cyclohexane. The gas phase oxidative cracking process could be run in an autothermal way (cyclohexane/O-2 mole ratio of 0.69-0.8 in theory), which would minimize energy consumption and capital costs of the whole process. CO prevailed in the produced CO, and the yield Of CO2 was always below 1%, which means about 90% Of CO2 emission by fuel burning in pyrolysis would be saved. The gas phase oxidative cracking process appears to be an environmentally benign and efficient route for light alkene production with naphthene rich feedstocks. (C) 2004 Published by Elsevier B.V.