54 resultados para socioeconomic level
Resumo:
A five-level tripod scheme is proposed for obtaining a high efficiency four-wave-mixing (FWM) process. The existence of double-dark resonances leads to a strong modification of the absorption and dispersion properties against a pump wave at two transparency windows. We show that both of them can be used to open the four-wave mixing channel and produce efficient mixing waves. In particular, higher FWM efficiency is always produced at the transparent window corresponding to the relatively weak-coupling field. By manipulating the intensity of the two coupling fields, the conversion efficiency of FWM can be controlled.
Lasing without or with inversion in an open four-level system with a phase-fluctuation driving field
Resumo:
The effect of exit rate and the ratio of atomic injection rate on gain behaviour has been investigated, and the effects of phase fluctuation on absorption, dispersion and population difference in an open four-level system have been analysed by using numerical simulation from the steady linear, analytical solution. The variation of the linewidth, Rabi frequency of the driving field, the exit rate or the ratio of atomic injection rate can change the lasing properties in the open system. The presence of finite linewidth due to driving-field phase fluctuation prevents the open four-level atomic system from obtaining a high refractive index along with zero absorption.
Resumo:
Using the technique of stimulated Raman adiabatic passage, we propose schemes for creating arbi- trary coherent superposition states of atoms in four-level systems: a A-type system with twofold final states and a four-level ladder system. With the use of a control field, arbitrary coherent superposition states are created without the condition of multiphoton resonance. Suitable manipulation of detunings and the control field can create either a single state or any superposition states desired. (c) 2005 Pleiades Publishing, Inc.
Resumo:
We propose a scheme for realizing negative refractive index in a four-level atomic system. It is shown that such a system can simultaneously exhibit negative permittivity and negative permeability in an optical frequency range. Furthermore, by analysing the dispersion property of the left-handed material, we find that the probe beam can be controlled from superluminal to subluminal or vice versa via choosing appropriate parameters.
Resumo:
It is shown that in a closed equispaced three-level ladder system, by controlling the relative phase of two applied coherent fields, the conversion from absorption with inversion to lasing without inversion (LWI) can be realized; a large index of the refraction with zero absorption can be gotten; considerable increasing of the spectrum region and value of the LWI gain can be achieved. Our study also reveals that the incoherent pumping will produce a remarkable effect oil the phase-dependent properties of the system. Modifying value of the incoherent pumping can change the property of the system from absorption to amplification and enhance significantly LWI gain. If the incoherent pumping is absent, we cannot get any gain for any value of the relative phase. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Electric and magnetic responses of the medium to the probe field are analysed in a four-level loop atomic system by taking into account the relative phase of the applied fields. An interesting phenomenon is found: under suitable conditions, a change of the refractive index from positive to negative can occur by modulating the relative phase of the applied fields. Then the medium can be switched from a positive index material to a negative index material in our scheme. In addition, a negative index material can be realized in different frequency regions by adjusting the relative phase. It may give us a convenient way to obtain the desired material with positive or negative index.
Resumo:
Sideband manipulation of population inversion in a three-level A atomic configuration is investigated theoretically. Compared with the case of a nearly monochromatic field, a population inversion between an excited state and a ground state has been found in a wide sideband intensity range by increasing the difference in frequency between three components. Furthermore, the population inversion can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field with respective to the phase of the central component. Changing the sum phase from 0 to pi, the population inversion between the excited state and the ground state can increase within nearly half of the sideband intensity range. At the same time, the sideband intensity range that corresponds to the system exhibiting inversion rho(00) > rho 11 also becomes wider evidently.
Resumo:
The spatiotemporal evolutions of ultrashort pulses in two dimensions are investigated numerically by solving the coupled Maxwell-Bloch equations without invoking the slowly varying envelope approximation and rotating-wave approximation. For an on-axis 2n pi sech pulse, local delay makes the temporal split 2 pi sech pulses crescent-shaped in the transverse distribution. Due to the transverse effect, the temporal split 2 pi sech pulses become unstable and experience reshaping during the propagation process. Then, interference occurs between the successive crescent-shaped pulses and multiple self-focusing can form.
Resumo:
Trichromatic manipulation of Kerr nonlinearity in a three-level A atomic configuration is investigated theoretically. It is shown that for a weak monochromatic probe field, the enhanced Kerr nonlinearity can be achieved in multiple separate transparent windows due to interference effect of multiple two-photon Raman channels. Furthermore, the property of Kerr nonlinearity can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field compared to the central component.
Resumo:
We propose an atom localization scheme for a four-level alkaline earth atom via a classical standing-wave field, and give the analytical expressions of the localization peak positions as well as the widths versus the parameters of the optical fields. We show that the probability of finding the atom at a particular position can be increased from 1/4 to 1/3 or 1/2 by adjusting the detuning of the probe field and the Rabi frequencies of the optical fields. Furthermore, the localization precision can be dramatically enhanced by increasing the intensity of the standing-wave field or decreasing the detuning of the probe field. The analytical results are quite accordant to the numerical solutions.
Resumo:
The effects of vacuum-induced coherence (VIC) on the properties of the absorption and gain of the probe field in an equispaced three-level ladder atomic system are investigated. It is found that lasing without inversion (LWI) is remarkably enhanced due to the effect of VIC in the case of the small incoherent pump rate.
Resumo:
We investigate the propagation of an arbitrary elliptically polarized few-cycle ultrashort laser pulse in resonant two-level quantum systems using an iterative predictor-corrector finite-difference time-domain method. It is shown that when the initial effective area is equal to 2 pi, the effective area will remain invariant during the course of propagation, and a complete Rabi oscillation can be achieved. However, for an elliptically polarized few-cycle ultrashort laser pulse, polarization conversion can occur. Eventually, the laser pulse will evolve into two separate circularly polarized laser pulses with opposite helicities.
Resumo:
Propagation of a few-cycle laser pulse in a V-type three-level system (fine structure levels of rubidium) is investigated numerically. The full three-level Maxwell-Bloch equations without the rotating wave approximation and the standing slowly varying envelope approximation are solved by using a finite-difference time-domain method. It is shown that, when the usual unequal oscillator strengths are considered, self-induced transparency cannot be recovered and higher spectral components can be produced even for small-area pulses. (c) 2005 Pleiades Publishing, Inc.
Resumo:
To attempt to control the quantum state of a physical system with a femtosecond two-colour laser field, a model for the two-level system is analysed as a first step. We investigate the coherent control of the two-colour laser pulses propagating in a two-level medium. Based on calculating the influence of the laser field with various laser parameters on the electron dynamics, it is found the electronic state can be changed up and down by choosing the appropriate laser pulses and the coherent control of the two-colour laser pulses can substantially modify the behaviour of the electronic dynamics: a quicker change of two states can be produced even for small pulse duration. Moreover, the oscillatory structures around the resonant frequency and the propagation features of the laser pulses depend sensitively on the relative phase of the two-colour laser pulses. Finally, the influence of a finite lifetime of the upper level is discussed in brief.
Resumo:
Using a omega-3 omega combination scenario, we investigate the absolute phase control of the spectra effects for ultrashort laser pulses propagating in a two-level medium. It is found that the higher spectral components can be controlled by the absolute phases. In particular, different absolute phase combinations can lead to the buildup or split of the even harmonics. (c) 2006 Elsevier B.V. All rights reserved.