163 resultados para slope traversal
Resumo:
A simple relationship between the initial unloading slope, the contact area, and the elastic modulus is derived for indentation in elastic-plastic solids by an indenter with an arbitrary axisymmetric smooth profile. Although the same expression was known to hold for elastic solids, the new derivation shows that it is also true for elastic-plastic solids with or without work hardening and residual stress. These results should provide a sound basis for the use of the relationship for mechanical property determination using indentation techniques. (C) 1997 American Institute of Physics.
Resumo:
Recent studies showed that vibration caused by blasting mainly reflects the property of geological structure itself neighboring the blasting center. Different vibration signals can be collected for different geological structures under blasting. Hence, vibration signal can be used to identify geological structure, especial for a slope with a weak layer. As the geological structure for a practical slope is usually complicated, the simulation of vibration caused by blasting should be carried out first. Generally, the material in a certain zone near the blasting center will undergo damage, so the physical model to simulate this region is the most concerned. In this paper, the damaged zone near blasting center is neglected, and the blasting load can be considered being applied on the interface between the damaged zone and undamaged zone. Regarding the relations between the weight of explosive, the size of damaged zone, and the dynamic loading to propagate out away, the vibration caused by blasting for a practical layered slope is simulated. Compared with the measured signal in site, it can be seen that the simulating result is in well agreement with that of practical testing. The results also indicate that the farther the testing point apart from the blasting center, the more accurate the simulation is.
Resumo:
The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.
Resumo:
Using analytical and finite element modeling, we examine the relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in viscoelastic solids with either displacement or load as the independent variable. We then investigate whether the Oliver-Pharr method for determining the contact depth and contact radius, originally proposed for indentation in elastic and elastic-plastic solids, is applicable to spherical indentation in viscoelastic solids. Finally, the analytical and numerical results are used to answer questions raised in recent literature about measuring viscoelastic properties from instrumented spherical indentation experiments.
Resumo:
With the finite element method and the limit equilibrium method, a numerical model has been estab-lished for examining the effects of rainfall infiltration on the stability of slopes. This model is able to reflect the variations in pore water pressure field in slopes, dead weight of the soil, and soil softening caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing was studied to analyze the effects of rainfall infiltration on the seepage field and slope sta-bility. The simulated results showed that a deep slope failure is prone to occur when rainfall infiltration leads to a remarkable variation in the seepage field, especially when the pore water pressure in slopes increases in a large range.
Resumo:
By using quite uniformly nine-stacks side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser with high slope efficiency of 62% has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 808 nm, performance of the Nd: YAG ceramic laser with different output coupling mirrors has been investigated. Optimum output power of 236 W at 1064 nm was obtained and corresponding optical-to-optical conversion efficiency was as high as 52.5%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output laser power could be obtained if injecting higher pumping power. The still-evolving Nd: YAG ceramics are potential super excellent media for high power practical laser applications. (c) 2005 Optical Society of America.
Resumo:
In this paper, a highly efficient Ti:sapphire end-pumped 1 at.-% Nd:YAG ceramic laser that is comparable in efficiency with Nd:YAG single crystal lasers has been developed. Optical absorption and emission spectra for Nd:YAG ceramics have been measured. With 673-mW pumping, 295-mW laser output at 1064 nm has been obtained. The laser threshold is only 13 mW. Deducted the transmitted light, the corresponding optical-to-optical conversion efficiency is 58.4%. The lasing characteristics of Nd:YAG ceramic are nearly equal to those of Nd:YAG single crystal.
Resumo:
Here we reported the fatty-acids and their δ 13C values in seep carbonates collected from Green Canyon lease block 185 (GC 185; Sample GC-F) at upper continental slope (water depth: ∼540 m), and Alaminos Canyon lease block 645 (GC 645; Sample AC-E) at lower continental slope (water depth: ∼2200 m) of the Gulf of Mexico. More than thirty kinds of fatty acids were detected in both samples. These fatty acids are maximized at C16. There is a clear even-over-odd carbon number predominance in carbon number range. The fatty acids are mainly composed of n-fatty acids, iso-/anteiso-fatty acids and terminally branched odd-numbered fatty acids (iso/anteiso). The low δ 13C values (−39.99‰ to.32.36‰) of n-C12:0, n-C13:0, i-C14:0and n-C14:0 suggest that they may relate to the chemosynthetic communities at seep sites. The unsaturated fatty acids n-C18:2 and C18:1Δ9 have the same δ 13C values, they may originate from theBeggiatoa/Thioploca. Unlike other fatty acids, the terminally branched fatty acids (iso/anteiso) show lowerδ 13C values (as low as −63.95‰) suggesting a possible relationship to sulfate reducing bacteria, which is common during anaerobic oxidation of methane at seep sites.