33 resultados para simultaneous graphite furnace atomic absorption spectrometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The charactesistics of two-dimension spectra obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) with charge injection detection (CID) in frequency domain were studied in the present paper. The measurement spectra were Fourier transformed and the frequency distribution of the spectra was obtained. Results showed that the spectra in frequency domain could he divided into two parts:high frequency and low frequency signals. The later stood for measurement spectra and the former for background and noises. However, the high frequecny signals could not be smoothed simply to reduce noises because the background was deteriorated even though the spectral signal did not change significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article applied [HEH(HEP)] (2-ethyhexyldrogen-2-ethylhexyl phosphonate)extraction chromatography to separate 14 rare earth impurities from ultra-highly pure Er2O3 and Ho2O3, and then the impurities were determined by atomic emission spectrometry. The average percentage recovery for each element is in the range of 70%similar to 140%. The relative standard deviations of the determination are +/-3.3%similar to 2.2%. This method can be applied to the determination of the trace amounts of rare eath impurities in Er2O3 and Ho2O3 with a purity of 99.999 9%-99.999 99%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Target transformation factor analysis was used to correct spectral interference in inductively coupled plasma atomic emission spectrometry (ICP-BES) for the determination of rare earth impurities in high purity thulium oxide. Data matrix was constructed with pure and mixture vectors and background vector. A method based on an error evaluation function was proposed to optimize the peak position, so the influence of the peak position shift in spectral scans on the determination was eliminated or reduced. Satisfactory results were obtained using factor analysis and the proposed peak position optimization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the analysis of mussel standard reference material by inductively coupled plasma atomic emission spectrometry( ICP-AES) and inductively coupled plasma mass spectrometry(ICP-MS) was developed. K, Na, Ca, Mg, P, Al, Fe, Zn, Mn and Sr were determined by ICP-AES and As, B, Cd, Co, Cr, Cu, Ga, Ge, Mn, Mo, Ni, Pb, Se, Sr, U and V by ICP-MS, The interference coefficients at the Mn-55, Se-78, Cu-63, Co-59, Ni-58, Ni-60, As-75, Se-77, V-51, Cr-53 and Cr-52 originating from polyatomic ion of the matrix elements (KO)-K-39-O-16, K-39(2), (ArNa)-Ar-40-Na-23, (CaO)-Ca-43-O-16, (CaO)-Ca-42-O-16, (CaO)-Ca-44-O-16, (PO2)-P-31-O-16, (ArCl)-Ar-40-Cl-35, (ArCl)-Ar-40-Cl-37, (ClO)-Cl-35-O-16, (ClO)-Cl-37-O-16 and (ArC)-Ar-40-C-12 were determined under the selected operation parameters. The major matrix elements, such as K, Na and Ca, result in the suppression of analytes signals. The apparent concentration at the significant biological element which was produced by the different digestion methods, (.) HNO3 + H2O2 (3 + 2), HNO3 + HClO4 (3 + 0.5) and HNO3 + H2SO4 (3 + 0.5),was determined. The sample digested by HNO3 + H2O2 did not give rise to interfere on the analyte, and the backgrounds of Se-77, Ga-69, Zn-67, As-75, V-51, Cr-53 and Cr-52 were increased by HNO3 + HClO4 digestion method, that affected the determination of these elements, especially the monoisotope As and V. Sample digested by HNO3 + H2SO4 increased the backgrounds at Cu-65, Zn-64 and Zn-67. Detection limits of ICP-AES are 0.001 similar to 0.75 mg/L and those of ICP-MS are 0.005 similar to 1.01 mu g/L. The relative standard derivations of ICP-AES and ICP-MS are 2.7% similar to 12.8%, 3.4% similar to 24.8%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of some factors on the performance of our Kalman filter in discrimination of closely spaced overlapping signals were investigated. The resolution power of the filter for overlapping lines can be strengthened by reduction of the step size in scans. The minimum peak separation of two lines which the Kalman filter can effectively handle generally equals two to three times the step size in scans. Significant difference between the profiles of the analysis and interfering lines and multiple lines from matrix in the spectral window of the analysis line are very helpful for the Kalman filter to discern closely spaced analysis and interfering signals correctly, which allow the filter well to resolve the line pair with very small peak distance or even the entirely coincident lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper reports some definite evidence for the significance of wavelength positioning accuracy in multicomponent analysis techniques for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). Using scanning spectrometers commercially available today, a large relative error, DELTA(A) may occur in the estimated analyte concentration, owing to wavelength positioning errors, unless a procedure for data processing can eliminate the problem of optical instability. The emphasis is on the effect of the positioning error (deltalambda) in a model scan, which is evaluated theoretically and determined experimentally. A quantitative relation between DELTA(A) and deltalambda, the peak distance, and the effective widths of the analysis and interfering lines is established under the assumption of Gaussian line profiles. The agreement between calculated and experimental DELTA(A) is also illustrated. The DELTA(A) originating from deltalambda is independent of the net analyte/interferent signal ratio; this contrasts with the situation for the positioning error (dlambda) in a sample scan, where DELTA(A) decreases with an increase in the ratio. Compared with dlambda, the effect of deltalambda is generally less significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper deals with the evaluation of the relative error (DELTA(A)) in estimated analyte concentrations originating from the wavelength positioning error in a sample scan when multicomponent analysis (MCA) techniques are used for correcting line interferences in inductively coupled plasma atomic emission spectrometry. In the theoretical part, a quantitative relation of DELTA(A) with the extent of line overlap, bandwidth and the magnitude of the positioning error is developed under the assumption of Gaussian line profiles. The measurements of eleven samples covering various typical line interferences showed that the calculated DELTA(A) generally agrees well with the experimental one. An expression of the true detection limit associated with MCA techniques was thus formulated. With MCA techniques, the determination of the analyte and interferent concentrations depend on each other while with conventional correction techniques, such as the three-point method, the estimate of interfering signals is independent of the analyte signals. Therefore. a given positioning error results in a larger DELTA(A) and hence a higher true detection limit in the case of MCA techniques than that in the case of conventional correction methods. although the latter could be a reasonable approximation of the former when the peak distance expressed in the effective width of the interfering line is larger than 0.4. In the light of the effect of wavelength positioning errors, MCA techniques have no advantages over conventional correction methods unless the former can bring an essential reduction ot the positioning error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correction of spectral overlap interference in inductively coupled plasma atomic emission spectrometry by factor analysis is attempted. For the spectral overlap of two known lines, a data matrix can be composed from one or two pure spectra and a spectrum of the mixture. The data matrix is decomposed into a spectra matrix and a concentration matrix by target transformation factor analysis. The component concentration of interest in a binary mixture is obtained from the concentration matrix and interference from the other component is eliminated. This method is applied to correcting spectral interference of yttrium on the determination of copper and aluminium: satisfactory results are obtained. This method may also be applied to correcting spectral overlap interference for more than two lines. Like other methods of correcting spectral interferences, factor analysis can only be used for additive spectral overlap. Results obtained from measurements on copper/yttrium mixtures with different white noise added show that random errors in measurement data do not significantly affect the results of the correction method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Kalman filter was developed for resolving overlapping lines in inductively coupled plasma atomic emission spectrometry (ICP-AES) and evaluated experimentally with the determination of La in the presence of Ho, and Cu in the presence of Pr. The whiteness of the innovation sequence for an optimal filter was explored to be the criterion for the correction of the wavelength positioning errors which may occur in spectral scans. Under the conditions of the medium-resolution spectrometer and 1.5 pm step size in scans, the filter effectively resolved the Cu/Pr line pair having a small peak separation of 4.8 pm. For the La/Ho line pair with a peak distance of 9.8 pm, an unbiased estimate for La concentration was still obtained even when the signal-to-background ratio was down to 0.048. Favourable detection limits for real samples were achieved. Unstructured backgrounds were modeled theoretically and all spectral scans therefore did not require the correction for solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the evaluation of the reliability of the analytical results obtained by Kalman filtering. Two criteria for evaluation were compared: one is based on the autocorrelation analysis of the innovation sequence, the so-called NAC criterion; the other is the innovations number, which actually is the autocorrelation coefficient of the innovation sequence at the initial wavelength. Both criteria allow compensation for the wavelength positioning errors in spectral scans, but there exists a difference in the way they work. The NAC criterion can provide information about the reliability of an individual result, which is very useful for the indication of unmodelled emissions, while the innovations number should be incorporated with the normalization of the innovations or seek the help of the sequence itself for the same purpose. The major limitation of the NAC criterion is that it does not allow the theoretical modelling of continuous backgrounds, which, however, is convenient in practical analysis and can be taken with the innovations number criterion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluates the effect of wavelength positioning errors in spectral scans on analytical results when the Kalman filtering technique is used for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a positioning accuracy of 0.1 pm is required in order to obtain accurate and precise estimates for analyte concentrations. The positioning error in sample scans is more crucial than that in model scans. The relative bias in measured analyte concentration originating from a positioning error in a sample scan increases linearly with an increase in the magnitude of the error and the peak distance of the overlapping lines, but is inversely proportional to the signal-to-background ratio. By the use of an optimization procedure for the positions of scans with the innovations number as the criterion, the wavelength positioning error can be reduced and, correspondingly, the accuracy and precision of analytical results improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most attractive features of derivative spectrometry is its higher resolving power. In the present power, numerical derivative techniques are evaluated from the viewpoint of increase in selectivity, the latter being expressed in terms of the interferent equivalent concentration (IEC). Typical spectral interferences are covered, including flat background, sloped background, simple curved background and various types of line overlap with different overlapping degrees, which were defined as the ratio of the net interfering signal at the analysis wavelength to the peak signal of the interfering line. the IECs in the derivative spectra are decreased by one to two order of magnitudes compared to those in the original spectra, and in the most cases, assume values below the conventional detection limits. The overlapping degree is the dominant factor that determines whether an analysis line can be resolved from an interfering line with the derivative techniques. Generally, the second derivative technique is effective only for line overlap with an overlapping degree of less than 0.8. The effects of other factors such as line shape, data smoothing, step size and the intensity ratio of analyte to interferent on the performance of the derivative techniques are also discussed. All results are illustrated with practical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of hydride generation-atomic fluorescence spectrometry was proposed in the present paper for the determination of trace arsenic and selenium in jellyfish. The samples were treated by the combination of microwave digestion and lyophilization. The optimal conditions for treating and analyzing samples were established. The problem of the effect of the superfluous acid in the digesting solution on the results was solved, and the influence of coexisting foreign ions on the determination of arsenic and selenium was investigated. The accuracy of the method was confirmed by the method of standard additions. This method proved to be simple, rapid and repeatable, and is suitable for the analysis of biologic samples containing water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An interface of chip-based capillary electrophoresis (CE)-inductively coupled plasma-atomic emission spectrometry (ICP-AES) that is based on cross-flow nebulization has been developed. A polydimethylsiloxane (PDMS) CE-chip with conventional cross channel layout was used. A stainless steel tube was placed orthogonal to the exit of the CE separation channel for cross flow nebulization. A supplementary flow of buffer solution at the channel exit was used to improve nebulization efficiency. Two capillaries were inserted into the CE chip near the inlet of the separation channel for sample and buffer solution injection. Syringe pumps were used to manipulate the flow rate and flow direction of the sample, buffer, and supplementary buffer solution. Peak broadening due to the shape (bulb and tube-shaped) and size of the spray chambers was studied. The smaller tube-shaped spray chamber was used because of smaller peak broadening effect due to aerosol transport. The nebulization and transport efficiency of the CE-ICP interface was approximately 10%. Ba2+ and Mg2+ ions were eluted from the CE-chip within 30 s. Resolution of the Ba2+ and Mg2+ peaks was 0.7 using the chip-based CE-ICP-AES system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the potentially adverse effects of the chromium (VI) on the human health and also on the environment, the quantitative determination of Cr(VI) is of particular interest. This work herein reports a facile, selective and rapid colorimetric determination of Cr(VI) based on the peroxidase substrate-2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) as the color developing agent. ABTS, which was usually acted as peroxidase substrate for the enzyme linked immunosorbent assay, is used here for the first time to fabricate the "signal-on" colorimetric Assay for Cr(VI).