22 resultados para security policy model
Resumo:
Communication University of China; Wuhan University; James Madison University; Institute of Policy and Management, Chinese Academy of Sciences; IEEE Wuhan Section
Resumo:
Huazhong Univ Sci & Technol, Natl Tech Univ Ukraine, Huazhong Normal Univ, Harbin Inst Technol, IEEE Ukraine Sect, I& M/CI Joint Chapter
Resumo:
Huazhong Univ Sci & Technol, Natl Tech Univ Ukraine, Huazhong Normal Univ, Harbin Inst Technol, IEEE Ukraine Sect, I& M/CI Joint Chapter
Resumo:
Since reform and opening up, how much contribution has China's implementation of new agricultural policy made to agricultural output? This paper is trying to establish an agricultural policy output econometric model for doing a quantitative analysis of China's new agricultural policy. The results show that China's agricultural policies on agricultural output have an average contribution rate of about 7% since 1978, which is consistent with the OECD's basic forecast. There are obvious temporal and spatial differences. Generally speaking, we can divide the contribution of agricultural policy into three periods, which are the start-up phase from 1978 to 1991 (14 years), the stationary phase from 1992 to 2002 (11 years) and the rising phase from 2003 to 2008 (6 years). In space, the contribution of agricultural policy underwent a process from the all-low in the start-up phase, the gradual increase in the stationary phase to the all-high in the rising phase. Northern and western regions are more sensitive to policies. There are three major factors that can affect the contribution of regional agricultural policies, which are the process of national industrialization strategy, terrain and the level of local finance.
Resumo:
In the paper through extensive study and design, the technical plan for establishing the exploration database center is made to combine imported and self developed techniques. By research and repeated experiment a modern database center has been set up with its hardware and network having advanced performance, its system well configured, its data store and management complete, and its data support being fast and direct. Through study on the theory, method and model of decision an exploration decision assistant schema is designed with one decision plan of well location decision support system being evaluated and put into action. 1. Study on the establishment of Shengli exploration database center Research is made on the hardware configuration of the database center including its workstations and all connected hardware and system. The hardware of the database center is formed by connecting workstations, microcomputer workstations, disk arrays, and those equipments used for seismic processing and interpretation. Research on the data store and management includes the analysis of the contents to be managed, data flow, data standard, data QC, data backup and restore policy, optimization of database system. A reasonable data management regulation and workflow is made and the scientific exploration data management system is created. Data load is done by working out a schedule firstly and at last 200 more projects of seismic surveys has been loaded amount to 25TB. 2. Exploration work support system and its application Seismic data processing system support has the following features, automatic extraction of seismic attributes, GIS navigation, data order, extraction of any sized data cube, pseudo huge capacity disk array, standard output exchange format etc. The prestack data can be accessed by the processing system or data can be transferred to other processing system through standard exchange format. For supporting seismic interpretation system the following features exist such as auto scan and store of interpretation result, internal data quality control etc. the interpretation system is connected directly with database center to get real time support of seismic data, formation data and well data. Comprehensive geological study support is done through intranet with the ability to query or display data graphically on the navigation system under some geological constraints. Production management support system is mainly used to collect, analyze and display production data with its core technology on the controlled data collection and creation of multiple standard forms. 3. exploration decision support system design By classification of workflow and data flow of all the exploration stages and study on decision theory and method, target of each decision step, decision model and requirement, three concept models has been formed for the Shengli exploration decision support system including the exploration distribution support system, the well location support system and production management support system. the well location decision support system has passed evaluation and been put into action. 4. Technical advance Hardware and software match with high performance for the database center. By combining parallel computer system, database server, huge capacity ATL, disk array, network and firewall together to create the first exploration database center in China with reasonable configuration, high performance and able to manage the whole data sets of exploration. Huge exploration data management technology is formed where exploration data standards and management regulations are made to guarantee data quality, safety and security. Multifunction query and support system for comprehensive exploration information support. It includes support system for geological study, seismic processing and interpretation and production management. In the system a lot of new database and computer technology have been used to provide real time information support for exploration work. Finally is the design of Shengli exploration decision support system. 5. Application and benefit Data storage has reached the amount of 25TB with thousand of users in Shengli oil field to access data to improve work efficiency multiple times. The technology has also been applied by many other units of SINOPEC. Its application of providing data to a project named Exploration achievements and Evaluation of Favorable Targets in Hekou Area shortened the data preparation period from 30 days to 2 days, enriching data abundance 15 percent and getting information support from the database center perfectly. Its application to provide former processed result for a project named Pre-stack depth migration in Guxi fracture zone reduced the amount of repeated process and shortened work period of one month and improved processing precision and quality, saving capital investment of data processing of 30 million yuan. It application by providing project database automatically in project named Geological and seismic study of southern slope zone of Dongying Sag shortened data preparation time so that researchers have more time to do research, thus to improve interpretation precision and quality.
Resumo:
Carbon is an essential element for life, food and energy. It is also a key element in the greenhouse gases and therefore plays a vital role in climatic changes. The rapid increase in atmospheric concentration of CO_2 over the past 150 years, reaching current concentrations of about 370 ppmv, corresponds with combustion of fossii fuels since the beginning of the industrial age. Conversion of forested land to agricultural use has also redistributed carbon from plants and soils to the atmosphere. These human activities have significantly altered the global carbon cycle. Understanding the consequences of these activities in the coming decades is critical for formulating economic, energy, technology, trade, and security policies that will affect civilization for generations. Under the auspices of the International Geosphere-Biosphere Programme (IGBP), several large international scientific efforts are focused on elucidating the various aspects of the global carbon cycle of the past decade. It is only possible to balance the global carbon cycle for the 1990s if there is net carbon uptake by terrestrial ecosystems of around 2 Pg C/a. There are now some independent, direct evidences for the existence of such a sink. Policymarkers involved in the UN Framework Convention on Climate Change (UN-FCCC) are striving to reach consensuses on a 'safe path' for future emissions, the credible predictions on where and how long the terrestrial sink will either persist at its current level, or grow/decline in the future, are important to advice the policy process. The changes of terrestrial carbon storage depend not only on human activities, but also on biogeochemical and climatological processes and their interaction with the carbon cycles. In this thesis, the climate-induced changes and human-induced changes of carbon storage in China since the past 20,000 years are examined. Based on the data of the soil profiles investigated during China's Second National Soil Survey (1979-1989), the forest biomass measured during China's Fourth National Forest Resource Inventory (1989-1993), the grass biomass investigated during the First National Grassland Resource Survey (1980-1991), and the data collected from a collection of published literatures, the current terrestrial carbon storage in China is estimated to -144.1 Pg C, including -136.8 Pg C in soil and -7.3 Pg C in vegetation. The soil organic (SOC) and inorganic carbon (SIC) storage are -78.2 Pg C and -58.6 Pg C, respectively. In the vegetation reservoir, the forest carbon storage is -5.3 Pg C, and the other of-1.4 Pg C is in the grassland. Under the natural conditions, the SOC, SIC, forest and grassland carbon storage are -85.3 Pg C, -62.6 Pg C, -24.5 Pg C and -5.3 Pg C, respectively. Thus, -29.6 Pg C organic carbon has been lost due to land use with a decrease of -20.6%. At the same time, the SIC storage also has been decreased by -4.0 Pg C (-6.4%). These suggest that human activity has caused significant carbon loss in terrestrial carbon storage of China, especially in the forest ecosystem (-76% loss). Using the Paleocarbon Model (PCM) developed by Wu et al. in this paper, total terrestrial organic carbon storage in China in the Last Glacial Maximum (LGM) was -114.8 Pg C, including -23.1 Pg C in vegetation and -86.7 Pg C in soil. At the Middle Holocene (MH), the vegetation, soil and total carbon were -37.3 Pg C, -93.9 Pg C and -136.0 Pg C, respectively. This implies a gain of-21.2 Pg C in the terrestrial carbon storage from LGM to HM mainly due to the temperature increase. However, a loss of-14.4 Pg C of terrestrial organic carbon occurred in China under the current condition (before 1850) compared with the MH time, mainly due to the precipitation decrease associated with the weakening of the Asian summer monsoon. These results also suggest that the terrestrial ecosystem in China has a substantial potential in the restoration of carbon storage. This might be expected to provide an efficient way to mitigate the greenhouse warming through land management practices. Assuming that half of the carbon loss in the degraded terrestrial ecosystem in current forest and grass areas are restored during the next 50 years or so, the terrestrial ecosystem in China may sequestrate -12.0 Pg of organic carbon from the atmosphere, which represents a considerable offset to the industry's CO2 emission. If the ' Anthropocene' Era will be another climate optimum like MH due to the greenhouse effect, the sequestration would be increased again by -4.3 - 9.0 Pg C in China.