101 resultados para ruthenium(II)
Resumo:
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium, tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.
Resumo:
Previous studies show that aromatic diols inhibited Ru(bpy)(3)(2+) electrochemiluminescence (ECL), and all reported Ru(bpy)(3)(2+) ECL methods for the determination of aromatic diols-containing coreactants are based on inhibition of Ru(bpy)(3)(2+)/tripropylamine ECL. In this study, the interaction between diol and borate anion was exploited for Ru(bpy)(3)(2+) ECL detection of coreactants containing aromatic diol group using epinephrine as a model analyte. The interaction prevented from the inhibition of Ru(bpy)(3)(2+) ECL by aromatic diol group of epinephrine. As a result, epinephrine was successfully detected in the absence of tripropylamine simply by using borate buffer solution as the supporting electrolyte. Under the optimum conditions, the log of the ECL intensity increases linearly with the log of epinephrine concentrations over the concentration range of 1.0x10(-9)-1.0x10(-4) M. The detection limit is 5.0x10(-10) M at a signal-to-noise ratio of three. The proposed method exhibit wider dynamic range and better detection limit than that by inhibited Ru(bpy)(3)(2+) ECL method. The relative standard deviation for 14 consecutive determinations of 5 mu M epinephrine was 3.5%. The strategy by interaction with borate anion or boronate derivatives is promising for the determination of coreactants containing aromatic diol group or aromatic hydroxyl acid group. Such interaction can also be used to avoid interference from aromatic diols or aromatic hydroxyl acids.
Resumo:
Capillary electrophoresis (CE) coupling with a tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL) detection technique was developed for the analysis of two 8-blockers, atenolol (AT) and metoprolol (ME). The parameters that influence the separation and detection, including the buffer pH and concentration, the separation voltage, the detection potential and Ru(bpy)(3)(2+) concentration, were optimized in detail. The calibration curve was linear over a concentration range of two or three orders of magnitude for the two beta-blockers. The detection limits for AT and ME were 0.075 and 0.005 mu M (S/N = 3). The relative standard deviations (n = 8) of the ECL intensity and the migration time were 2.65 and 0.22% for AT, 2.82 and 0.34% for ME, respectively. The proposed method was applied to determine AT and ME in spiked urine samples; satisfactory results were obtained.
Resumo:
In this paper, a simple method of preparing {SiO2/Ru-(bPY)(3)(2+)}(n) multilayer films was described. Positively charged tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) and negatively charged SiO2 nanoparticles were assembled on ITO electrodes by a layer-by-layer method. Electrochemical and electrogenerated chemiluminescence (ECL) behaviors of the {SiO2/Ru(bpy)(3)(2+)}(n) multilayer film-modified electrodes were studied. Cyclic voltammetry, UV-visible spectroscopy, quartz crystal microbalance, and ECL were adopted to monitor the regular growth of the multilayer films. The multilayer films containing Ru(bpy)(3)(2+) was used for ECL determination of TPA, and the sensitivity was more than 1 order of magnitude higher than that observed for previous reported immobilization methods for the determination of TPA. The multilayer films also showed better stability for one month at least. The high sensitivity and stability mainly resulted from the high surface area and special structure of the silica nanoparticles.
Resumo:
A new method for prolidase (PLD, EC 3.4.13.9) activity assay was developed based on the determination of proline produced from enzymatic reaction through capillary electrophoresis (CE) with tris(2,2'-bipyridyl)ruthenium(11) [Ru(bpy)(3)(2+)] electrochemiluminescence detection (ECL). A detection limit of 12.2 fmol (S/N = 3) for proline, corresponding to 1.22 x 10(-8) units of prolidase catalyzing for 1 min was achieved. PLD activity determined by CE-ECL method was in agreement with that obtained from the classical Chinard's one. CE-ECL showed its powerful resolving ability and selectivity as no sample pretreatmentwas needed and no interference existed. The clinical utility of this method was successfully demonstrated by its application to assay PLD activity in the serum of diabetic patients in order to evaluate collagen degradation in diabetes mellitus (DM). The results indicated that enhanced collagen degradation occurred in DM.
Resumo:
A sensitive electrochemiluminescent detection scheme by solid-phase extraction at Ru(bpy)(3)(2+)-modified ceramic carbon electrodes (CCEs) was developed. The as-prepared Ru(bpy)(3)(2+)-modified CCEs show much better long-term stability than other Nafion-based Ru(bpy)(3)(2+)-modified electrodes and enjoy the inherent advantages of CCEs. The log-log calibration plot for dioxopromethazine is linear from 1.0 x 10(-9) to 1.0 x 10(-4) mol L-1 using the new detection scheme. The detection limit is 6.6 x 10(-10) mol L-1 at a signal-to-noise ratio of 3. The new scheme improves the sensitivity by similar to 3 orders of magnitude, which is the most sensitive Ru(bpy)(3)(2+) ECL method. The scheme allows the detection of dioxopromethazine in a urine sample within 3 min. Since Ru(bpy)(3)(2+) ECL is a powerful technique for determination of numerous amine-containing substances, the new detection scheme holds great promise in measurement of free concentrations, investigation of protein-drug interactions and DNA-drug interactions, pharmaceutical analysis, and so on.
Resumo:
A facile CE method coupled with tris(2,2'-bipyridyl) ruthenium(ll)-based electrochem iluminescence [Ru(bpy)(3)(2+)] detection was developed for simultaneous determination of Aconitum alkaloids, i.e., hypaconitine (HA), aconitine (AC), and mesaconitine (MA) in baseline separation. The optimal separation of these Aconitum alkaloids was achieved in a fused-silica capillary column (50 cm x 25 mu m id) with 30 mM phosphate solution (pH 8.40) as running buffer at 12 kV applied voltage. The three alkaloids can be determined within 10 min by a single run. The calibration curves showed a linear range from 2.0 x 10(-7) to 2.0 x 10(-5) M for HA, 3.4 x 10(-7) to 1.7 x 10(-5) M for AC, and 3.8 x 10(-7) to 1.9 x 10(-5) M for MA. The RSDs; for all analytes were below 3.01%. Good linear relationships were found with correlation coefficients for all analytes exceeding 0.993. The detection limits were 2.0 x 10(-8) M for HA, 1.7 x 10(-7) M for AC, and 1.9 x 10(-7) M for MA under optimal conditions. This method was successfully applied to determine the three alkaloids in Aconitum plants.
Resumo:
We described here a new method for the determination of total calcium in plasma. The method is based on the precipitation of calcium with excess oxalate and the measurement of residual oxalate by flow injection analysis with Ru(bpy)(3)(2+) electrochemiluminescent detection. It has the advantages of extremely stable reagent, user-friendly instrument, high selectivity, good analytical recovery, wide dynamic range, and nice correlation with atomic absorption spectroscopy. The calibration plot for calcium is linear over a concentration range from 0.5 mmol L-1 to 4.8 mmol L-1, which is wider than those obtained by most other methods. The analytical recoveries for plasma calcium are 98.4-101.2% with coefficients of variation (CVs) of 1.96-2.52%. The within-day CVs range from 0.76% to 0.95%, and between-day CVs were from 1.12% to 1.46%. The time for each injection is one minute. Because the proposed method can be readily carried out on increasingly popular instruments for Ru(bpy)(3)(2+) ECL immunoassays and DNA probe assays, Ru(bpy)32+ ECL method is suitable for routine clinical analysis of calcium.
Resumo:
An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) into the Eastman-AQ55D-silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)(3)(2+) immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 mumol l(-1) for oxalate and 0.1 mumol l(-1) for both TPA and CPZ (S/N = 3), respectively. The linear range extended from 50 mumol l(-1) to 5 mmol l(-1) for oxalate, from 20 mumol l(-1) to 1 mmol l(-1) for TPA, and from 1 mumol l(-1) to 200 mumol l(-1) for CPZ.
Resumo:
The design and performance of a miniaturized chip-type tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] electrochemiluminescence (ECL) detection cell suitable for both capillary electrophoresis (CE) and flow injection (FI) analysis are described. The cell was fabricated from two pieces of glass (20 x 15 x 1.7 mm), and the 0.5-mm-diameter platinum disk was used as working electrode held at +1.15 V (vs silver wire quasi-reference), the stainless steel guide tubing as counter electrode, and the silver wire as quasi-reference electrode. The performance traits of the cell in both CE and FI modes were evaluated using tripropylamine, proline, and oxalate and compared favorably to those reported for CE and FI detection cells. The advantages of versatility, sensitivity, and accuracy make the device attractive for the routine analysis of amine-containing species or oxalate by CE and FI with Ru(bPY)(3)(2divided by) ECL detection.