151 resultados para runoff processes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water-heat transfer process between land and atmosphere in Haibei alpine meadow area has been systematically observed. A multi-layer coupling model for land-atmosphere interaction was presented with special attention paid to the moisture transfer in leaf stomata under unsaturated condition. A profound investigation on the physical process of turbulent transfer inside the vegetation has been performed with a revised formula of water absorption for root system. The present model facilitates the study of vertically distributed physical variables in detail. Numerical simulation was conducted according to the transfer process of Kinesia humility meadow in the area of Haibei Alpine Meadow Ecosystem Station, CAS. The calculated results agree well with observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we have elucidated the importance of energy and water cycling in arid areas to investigate global climate and local economics. Then, we were concerned with the physical arguments as how to stratify the soil, and the stability of the numerical scheme in the mathematical model for predicting temperature variation and water motion. Furthermore, we discuss the methods to estimate evaporation in arid areas. Numerical simulation of energy and water cycling at the Acsu Observatory, CAS, Xinjiang province and Shapuotou Observatory, CAS, Ningxia Province are conducted as case studies. The results show that the laws of terrestrial processes are rather typical in these arid areas. Planting drought-endurable trees can alleviate unfavourable conditions to a certain extent. (C) 1997 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crack tip processes in copper under mode II loading have been simulated by a molecular dynamics method. The nucleation, emission, dislocation free zone (DFZ) and pile-up of the dislocations are analyzed by using a suitable atom lattice configuration and Finnis & Sinclair potential. The simulated results show that the dislocation emitted always exhibits a dissociated fashion. The stress intensity factor for dislocation nucleation, DFZ and dissociated width of partial dislocations are strongly dependent on the loading rate. The stress distributions are in agreement with the elasticity solution before the dislocation emission, but are not in agreement after the emission. The dislocation can move at subsonic wave speed (less than the shear wave speed) or at transonic speed (greater than the shear wave speed but less than the longitudinal wave speed), but at the longitudinal wave speed the atom lattice breaks down.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of thermal activation on the dislocation emission from an atomistic crack tip are discussed, Molecular dynamics simulations at different constant temperatures are carried out to investigate the thermal effects. The simulated results show that the processes of the partial dislocation generation and emission are temperature dependent. As the temperature increases, the incipient duration of the partial dislocation nucleation becomes longer, the critical stress intensity factor for partial dislocation emission is reduced and, at the same loading level, more dislocations are emitted. The dislocation velocity moving away from the crack tip and the separations of partial dislocations are apparently not temperature dependent. The simulated results also show that, as the temperature increases, the stress distribution along the crack increases slightly. Therefore stress softening at the crack tip induced by thermal activation does not exist in the present simulation. A simple model is proposed to evaluate the relation of the critical stress intensity factor versus temperature. The obtained relation is in good agreement with our molecular dynamics results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXPERIMENTS carried out using a split Hopkinson torsional bar have shown that only one shear band develops in specimens of hot rolled steel which break during testing. We observed, however, that in specimens which were not deformed to failure, several fine shear bands appeared. We believe that these formed during the loading cycle before the appearance of the final shear band and were not due to the effect of unloading. So we developed a numerical model to study the evolution of shear banding from several finite amplitude disturbances (FADs) in both temperature and strain rate. This numerical model reveals the detailed processes by which the FADs evolve into a fully developed shear band and suggests that beyond instability, the so-called shear banding process consists of two stages: inhomogeneous shearing and true shear-banding. The latter is characterized by the collapse of the stress and an abrupt increase of the local shear strain rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview on the onset of thermocapillary oscillatory convection in a floating half zone is provided, and it is a typical subject in the microgravity sciences related to the space materials science, especially the floating zone processing, and also to the microgravity fluid physics. The main interests are focused around the process for onset of oscillatory thermocapillary convection, which is known also as the bifurcation transition from quasi-steady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, such as the Marangoni number, Prandtl number, geometrical parameters, and heat transfer parameters. Recent studies show that, there exists the bifurcation transition from steady and axial symmetric convection to the steady and axial non-symmetric convection before the onset of oscillation in cases of small Prandtl number fluids and in cases of larger Prandtl number fluids of fat liquid bridge with small aspect ratio. The transition process is a strong non-linear process because the velocity deviation has the same order of magnitude as that of an average flow after the onset of oscillation, and unsteady 3-D numerical simulation is suitable to do in depth analysis on strong non-linear process, and leads generally to a better comparison with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To simulate fracture behaviors in concrete more realistically, a theoretical analysis on the potential question in the quasi-static method is presented, then a novel algorithm is proposed which takes into account the inertia effect due to unstable crack propagation and meanwhile requests much lower computational efforts than purely dynamic method. The inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, results may become questionable if a fracture process including unstable cracking is simulated by the quasi-static procedure excluding completely inertia effects. However, it requires much higher computational effort to simulate experiments with not very high loading rates by the dynamic method. In this investigation which can be taken as a natural continuation, the potential question of quasi-static method is analyzed based on the dynamic equations of motion. One solution to this question is the new algorithm mentioned above. Numerical examples are provided by the generalized beam (GB) lattice model to show both fracture processes under different loading rates and capability of the new algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonant interaction of an autoionising state with a strong laser field is considered and effects of second-order ionisation processes are investigated. The authors show that these processes play a very important role in laser-induced autoionisation (LIA). They drastically affect the lowest-order peaks in the photoelectron spectrum. In addition to these peaks, high-order peaks due to ejection of energetic photoelectrons appear. For the laser intensities of current interest, second-order peaks are much stronger than the original ones, an important result that, they believe, can be observed experimentally. Moreover, `peak switching', a general feature of above-threshold ionisation, is also manifest in the electron spectrum of LIA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several schemes for coherent quantum control of atomic and molecular processes have been proposed and investigated by using the techniques of adiabatic passage and ultrashort pulses, respectively. Some interesting results have been found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-linear perturbation model for river flow forecasting is developed, based on consideration of catchment wetness using an antecedent precipitation index (API). Catchment seasonality, of the form accounted for in the linear perturbation model (the LPM), and non-linear behaviour both in the runoff generation mechanism and in the flow routing processes are represented by a constrained nan-linear model, the NLPM-API. A total of ten catchments, across a range of climatic conditions and catchment area magnitudes, located in China and in other countries, were selected for testing daily rainfall-runoff forecasting with this model. It was found that the NLPM-API model was significantly more efficient than the original linear perturbation model (the LPM). However, restric tion of explicit nan-linearity to the runoff generation process, in the simpler LPM-API form of the model, did not produce a significantly lower value of the efficiency in flood forecasting, in terms of the model efficiency index R-2. (C) 1997 Elsevier Science B.V.