66 resultados para reaching
Resumo:
Sinibrama longianalis, a new cyprinid species from the Wu Jiang (upper Yangtze River basin) in Guizhou, China is distinguished from other congeners in having the following combination of characters: last simple dorsal-fin ray well-ossified; a snout shorter than eye diameter; eye diameter 27.1-31.6% HL; lateral line scales 56-64 (mean 59.5); circumpeduncular scales 18-21; anal fin with 24-28 (mean 25.2) branched rays, originating opposite to or slightly in advance of posterior end of dorsal-fin base, basal length 27.0-31.1% SL; pectoral fin reaching to or slightly beyond pelvic-fin insertion.
Resumo:
In situ growth of heterotrophic nanoflagellates (HNF) in Lake Donghu, a eutrophic shallow lake in mainland China, was studied from January 1999 to March 2000 using a modified Weisse protocol. The study results indicated that the growth rates of HNF showed pronounced seasonal variation (-0.37-1.25 d(-1)), reaching the maximum during spring to early summer. When the water temperature was higher than 25.5 degreesC, HNF growth was inversely proportional to water temperature. There was an effect by bacterial abundance and autotrophic picoplankton on HNF growth that depended on location. HNF biomass was the highest in late spring, and the HNF production ranged from -2.25 to 35.45 mg l(-1) d(-1) with mean of 3.17 mg l(-1) d(-1). When considered in the context of biomass and production data for zooplankton in Lake Donghu, it was evident that HNF contributed significantly to the total zooplankton production in Lake Donghu. These in situ studies indicate that temperature and food supply are the major determinants of HNF abundance and productivity.
Resumo:
Age, growth, and reproduction of the bitterling, Paracheilognathus imberbis (Gunther), in Niushan Lake were studied between 1998 and 1999. Annuli on the scales were clear and could be used as valid indicators of age. The population of the fish comprised only one age group. The growth rate of males was markedly greater than that of females. The fish were multiple spawners, reaching maturity in the second year. Minimum size for males at maturity was 32.9 mm in total length and 0.30 g in weight; for females, the minima were 41.0 mm and 0.73 g. During the breeding season, both sexes exhibited secondary sex characteristics, and the ratio of males to females was 1: 1.04 (n = 104). The size of mature eggs averaged 3.12 mm in length by 1.03 mm. in width. Fecundity per female for one age group ranged from 38 to 189 eggs, with an average of 93 eggs (n = 80).
Resumo:
Procedures to improve somatic cell nuclear transplantation in fish were evaluated. We reported effects of nonirradiated recipient eggs, inactivated recipient eggs, different combinations between recipient eggs and donor cells, duration of serum starvation, generation number, and passage number of donor cells on developmental rates of nuclear transplant (NT) embryos. Exposure to 25,000 R of gamma-rays inactivated recipient eggs. Single nucleus of cultured, synchronized somatic cell from gynogenetic bighead carp (Aristichthys nobilis) was transplanted into nonirradiated or genetically inactivated unfertilized egg of gibel carp (Carassius auratus gibelio). There was no significant difference in developmental rate between nonirradiated and inactivated recipient eggs (27.27% vs. 25.71%, respectively). Chromosome count showed that 70.59% of NT embryos contained 48 chromosomes. It showed that most NT embryos came from donor nuclei of bighead carp, which was supported by microsatellite analysis of NT embryos. But 23.53% of NT embryos contained more than 48 chromosomes. It was presumed that those superfluous chromosomes came from nonirradiated recipient eggs. Besides, 5.88% of NT embryos were chimeras. Eggs of blunt-snout bream (Megalobrama amblycephala) and gibel carp were better recipient eggs than those of loach (Misgurnus anguillicaudatus) (25% and 18.03% vs. 8.43%). Among different duration of serum starvation, developmental rate of NT embryos from somatic nuclei of three-day serum starvation was the highest, reaching 25.71% compared to 14.14% (control), 20% (five-day), and 21.95% (seven-day). Cultured donor cells of less passage facilitated reprogramming of NT embryos than those of more passage. Recloning might improve the developmental rate of NT embryos from the differentiated donor nuclei. Developmental rate of fourth generation was the highest (54.83%) and the lowest for first generation (14.14%) compared to second generation (38.96%) and third generation (53.01%). (C) 2002 Wiley-Liss, Inc.
Resumo:
Stocking experiments with Eriocheir sinensis were conducted in two small, shallow lakes to study its growth pattern in 1994-1997. For the initially immature crabs, carapace width (CW) increases from 21.2 +/- 0.4 mm (mean +/- s.e.) for females and 22.3 +/- 0.5 mm for males in January, to 65.4 +/- 0.5 mm for females and 66.9 +/- 0.6 mm for males in October. There is no significant difference in CW and carapace length (CL), although there is a large difference in body weight (BW) between sexes in every month from January to August when crabs are juvenile, however, there are significant differences in CW, CL. and BW between sexes after September when the crabs become sexually mature. The growth curve from January to October fits a logistic equation and may be expressed as CW = 75.7 (1 + exp (0.914 - 0.011t))(-1) for females, and CW = 77.5 (1 + exp (0.889 - 0.011t))-1 for males, where CW is in mm, t in days. For precocious crabs (reaching maturity by the first autumn, CW does not change much from January to July, which indicates that precocious crabs stop growing. Like juveniles, the precocious crabs show no differences in CW and CL, but do show a statistically significant difference in BW between sexes.
Resumo:
The role of phosphorus cycling in algal metabolism was studied in a shallow lake, Donghu, in Wuhan using the methods of measuring cell quota C, N and P, and calculating nutrients uptake rate by algal photosynthesis. The mean daily phosphorus uptake rate of phytoplankton varied between 0.04-0.11 and 0.027-0.053 g/m2/d in station I and station II respectively. The turnover time of phosphorus in phytoplankton metabolism ranged from 0.75-5.0 days during 1979-1986. The available P was 0.176 (+/- 0.156) g/m3 (mean +/- SD) in 1982 and 0.591 (+/- 0.24) g/m3 in 1986. The relationship between P/B ratio (Y) and TP (X: mg/l) was described by the following regression equation Y = 1.163 + 0.512logX (r = 0.731, P < 0.001). The dynamics of algal biomass and algal species succession were monitored as the indicators of environmental enrichment. The small-sized algae have replaced the blue-green algae as the dominant species during 1979-1986. The small-sized algae include Merismopedia glauca, Cryptomonas ovata, Cryptomonas erosa, several species Cyclotella. There has been drastic decrease in algal biomass and an obvious increase in P/B ratio. A nutrient competition hypothesis is proposed to explain the reason of the disappearance of blue-green algae bloom. The drastic change in algal size and the results in high P/B ratio (reaching a maximum mean daily ratio of 1.09 in 1986) may suggest a transition of algal species from K-selection to r-selection in Lake Donghu.
Resumo:
This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x-ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence measurement of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of -0.89 GPa.
Resumo:
We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.
Resumo:
We observe "ghost" islands formed on terraces during homoepitaxial nucleation of GaN. We attribute the ghost islands to intermediate nucleation states, which can be driven into "normal" islands by scanning tunneling microscopy. The formation of ghost islands is related to excess Ga atoms on the surface. The excess Ga also affect island number density: by increasing Ga coverage, the island density first decreases, reaching a minimum at about 1 monolayer (ML) Ga and then increases rapidly for coverages above 1 ML. This nonmonotonic behavior points to a surfactant effect of the Ga atoms.
Resumo:
Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Neutron irradiated high resistivity (4-6 kOMEGA-cm) silicon detectors in the neutron fluence (PHI(n)) range of 5 X 10(11) n/cm2 to 1 X 10(14) n/cm2 have been studied using a laser deep level transient spectroscopy (L-DLTS). It has been found that the A-center (oxygen-vacancy, E(c) = 0.17 eV) concentration increases with neutron fluence, reaching a maximum at PHI(n) almost-equal-to 5 X 10(12) n/cm2 before decreasing with PHI(n). A broad peak has been found between 200 K and 300 K, which is the result of the overlap of three single levels: the V-V- (E(c) = 0.38 eV), the E-center (P-V, E(c) = 0.44 eV), and a level at E(c) = 0.56 eV that is probably V-V0. At low neutron fluences (PHI(n) < 5 X 10(12) n/cm2), this broad peak is dominated by V-V- and the E-centers. However, as the fluence increases (PHI(n) greater-than-or-equal-to 5 X 10(12) n/cm2), the peak becomes dominated by the level of E(c) = 0.56 eV.
Resumo:
By calculating the energy distribution of electrons reaching the photocathode surface and solving the Schrodinger equation that describes the behavior of an electron tunneling through the surface potential barrier,we obtain an equation to calculate the emitted electron energy distribution of transmission-mode NEA GaAs photocathodes. Accord- ing to the equation,we study the effect of cathode surface potential barrier on the electron energy distribution and find a significant effect of the barrier-Ⅰ thickness or end height,especially the thickness,on the quantum efficiency of the cath- ode. Barrier Ⅱ has an effect on the electron energy spread, and an increase in the vacuum level will lead to a narrower electron energy spread while sacrificing a certain amount of cathode quantum efficiency. The equation is also used to fit the measured electron energy distribution curve of the transmission-mode cathode and the parameters of the surface barri- er are obtained from the fitting. The theoretical curve is in good agreement with the experimental curve.
Resumo:
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
混农季节性放牧(agropastoral transhumance)通过作物种植和畜牧生产相结合的方式对不同海拔高度带上的资源进行相互补充利用,在亚洲兴都库什地区、青藏高原、横断山、东部及南部非洲、南美安第斯地区等具有悠久的历史。这种传统的生计系统几千年以来一直是居住在该地区的人类社会和自然生态系统相互作用的主要形式之一。这种传统的资源利用方式与山地自然植被以及特殊的山地人类文化和社会特征具有密切的协同演变关系。认识和理解这一关系,是山地生态学和人类学的核心科学问题之一。近年来,山地生态系统的多重功能性及动态演变对山区社会经济可持续发展的重要意义受到人们的不断关注。本文通过对云南省德钦县的12个自然村的混农季节性放牧以及对云南德钦、四川壤塘等山地植被格局特别是高海拔地带植被格局的的详细调查,探讨青藏高原东缘地区混农季节性放牧的主要特征、系统构成及相互关系,及其在全球变化、经济全球化和市场化及现代化过程中的变化趋势,分析混农季节性放牧与高山林线格局及生态系统的互动关系,旨在探讨山地地区人类活动与自然生态系统之间的互动关系,从而为山区社会经济可持续发展、环境建设和生物多样性保护等国家战略提供理论依据。 调查结果表明,混农季节性放牧是一种适应青藏高原东部高山峡谷地区环境因子及自然资源呈明显的垂直分布、资源数量稀少而时空分布异质性极高的生存环境的一种传统经济形式。这种传统的畜牧业的主要生产目的仍然是提供当地基本生存所需的产品,饲养牲口的种类和数量取决于农户的当地需求并且受资源的限制,因而维持在比较低的水平的。分布在不同海拔高度的放牧资源在一年中被牲口利用的时间也不同,互为补充,共同构成混农季节性放牧的资源基础。根据各社区永久居住点的位置和该村的土地资源特别是牧草地资源的分布范围,牲口迁移的距离和格局有较大的差异。。天然牧场仍然是最主要的畜牧业生产资源。混农季节性放牧中的农业系统和牧业系统互为补充,共同构成调查地区完整的的生计系统,农耕活动为放牧活动提供精饲料如粮食等和冬季饲料如秸秆, 其数量往往成为家庭畜牧业生产规模的主要决定因子之一。 通过对牲口数量和结构、牲口的时空迁移格局、牧业活动在整个经济活动中的相对重要性以及牧业活动和作物种植的关系方面的研究分析,混农季节性放牧在近几十年发生了深刻的变化。主要表现在牲口数量总体下降,牲口组成发生变化,牲口移动性降低、牧业活动的经济重要性下降以及牧业活动和种植活动之间的相互依存度降低等。上述变化的根本驱动力是发生在当地、地区及全球尺度上的环境、政治、社会经济、技术和文化等的变化,从而造成当地群众畜牧生产目标、土地利用和劳动力的分布等发生了变化。当地生计系统发生的改变可能会带来对方面而深刻的政治、社会经济、文化和生态影响。 混农季节性放牧这种古老的传统生计策略面临着许多挑战,如冬季饲料短缺、草场退化、缺乏市场竞争力、经济重要性降低、对年轻人缺乏吸引力、国家缺乏专门的政策指导等。与此同时,经济全球化、市场经济、新技术的应用、替代生计机会的增加、国家对于山地生态系统的作用的重新定位等也为传统生计系统转型、实现社会与生态共赢创造了机遇。 混农季节性放牧活动对亚高山及树线交错带生态系统系统的互动方式主要体现在以下几个方面:(1)牲口啃食、践踏等影响森林群落更新,改变森林群落的组成和结构,从而影响森林群落的演替进程和植被格局。林线边缘是搭建夏棚的首选地点,因此林线及树线交错地带就成了牲口活动的主要场所之一;(2)利用火烧开辟、维持和改良高山牧场; 3)在亚高山火灾迹地的放牧活动能够阻止火烧迹地的顺向演替; 4)牧民在林线附近获取建材和薪材等活动影响高山林线附近森林的结构和功能。 在调查区域,梅里雪山、白马雪山、甲午雪山的林线海拔高度在4200-4300m之间; 四川雅江、理塘一线,林线位置多在4300-4400m;四川壤塘二林场一带的林线主体在4100-4200m,在个别地区达到4300m; 在贡嘎山的南坡和东坡一带,林线位置在3600-3700m;而在四川松潘一带,林线位置主体在3700-3800米左右。树线高度的分布趋势和林线一致。混农季节性放牧及其有关人类利用活动使研究地区很多地方高山林线降低、树线交错带宽变窄或消失。在研究地区,总体情况是,阳坡和半阳坡(南坡、西南坡等)的林线和树线比阴坡和半阴坡(北坡、东北坡等)低,变化幅度达20-200m。这种差异主要是为了开辟牧场而人为清除了南向坡自然林线及其以上的植被从而使林线位置下降所致。在南坡自然林线保留得比较好的地方,林线和树线依然可以达到甚至超过北坡林线和树线的高度。放牧活动抑制了高山林线带火烧迹地的天然更新,从而使林线位置保持在目前的位置。 放牧活动对高山林线带森林群落更新的影响是显著的。自然林线内的乔木个体密度特别是新生苗和幼苗的密度大大高于非自然林线。没有放牧的自然林线及树线交错带内的I级个体(新生苗)密度达到725-2917株/公顷,而与之相对的处理样地内I级个体的密度只有0-228株/公顷;II级个体(高度10-50cm)也表现出类似的趋势,在没有放牧的自然林线及树线交错带样方内,其密度达到550-5208株/,而在放牧处理样方内只有14-321株/公顷。在非自然林线带样地内,在有正常放牧的样地内,完全缺乏I级个体。 从相对比例来看,没有放牧的样方内的I、II级个体在全部个体中所占的比例显著高于有放牧活动的样方。放牧使林线交错带的乔木幼苗数量显著减少,从而影响林线及树线交错带森林群落的天然更新过程。林线和树线交错带的灌木对乔木幼苗具有重要的保护作用,能够为树线树种如冷杉等幼苗的定居体提供有利的微气候环境,同时保护苗免受牲口的啃食和践踏。火烧以后接着进行放牧能够100%地抑制高山林线带的幼苗更新。 高山牧场放牧强度降低、使用时间缩短而低海拔地带放牧强度增加是研究地区混农季节性放牧系统的一个显著变化。这种变化也必然会引起各海拔带上的生态系统的变化。放牧强度的降低、生产性用火的停止将导致原来通过人工火烧而降低并通过进一步的火烧和放牧活动来维持的林线及其以上地带的灌木盖度和高度的增加,从而为林线森林群落的扩张创造条件。 青藏高原东部高山峡谷地区是我国重要的山地生态系统,在我国的生物多样性保护、生态环境建设、社会经济可持续发展战略中具有举足轻重的作用。正确认识人类特别是当地传统的生计系统与生态环境系统的互动关系是实现上述战略目标的前提。决策者必须以综合、系统的的视角协调促进社会经济可持续发展、保护生物及文化多样性和维持人、牲口和生态系统之间的平衡的多重目标。 Agropastoral transhumance, which makes a complementary exploitation of the natural resources at different altitudinal belts through a combination of migratory animal husbandry and crop cultivation, has a long history in Hindu-Kush Himalaya, Tibet Plateau, Hengduan Ranges, eastern and southern Africa and the Andes region of south America.For millennia, this traditional livelihood strategy has been one of the main forms of interaction between human societies inhabiting in these regions and their natural ecocystems. A close co-evolutionary relationship has been developed between this indigenous resources management systems and the mountain vegetation systems on the one hand and a unique set of cultural values and social features on the other. Understanding this relationship has been one of the core scientific issues in mountain ecology and anthropology. In recent years, the importance of the multiple functions of the mountain ecosystems and their dynamic changes in the sustainable socio-economic development of the mountain regions has gained increasing attention. This paper, which is based on a detailed study on the agropastoral practices of the 12 natural villages in Deqin County of Yunnan, and the mountainnn vegetation patterns in Deqin of Yunnan and Rangtang County of Sichuan, intends to reveal the major characteristics, system composition and the inter-relations of the subsystems of the agropastoral transhumance in Eastern Tibetan Plateau as well as the trends of changes of the system within the context of global changes, economic globalization and modernity process of China and analyze the relations between agropastoral transhumance and alpine ecosystem, ao as to understand the interactions between human activities and natural ecosystems of the mountains and provide theoretical basis for the national strategies in eocioeconomic development, environmental reconstruction and biodiversity conservation in the mountain regions. Results of the survey indicate that agropastoral transhumance in the investigated area is a traditional economic form that is highly adapted to the eastern Tibet Plateau where the topography features high peaks and deep gorges and where the highly variable environmental parameters and scanty natural resources exhibit a distinct vertical spectrum of distribution and great temporal and spatial heterogeneity. The main objective of pastoral management is still aimed at the production of basic goods and services of local people and thus the type and size of animals raised for each household mainly depend on local needs and are limited by the availability of natural resources. The scale of production is relatively low. Pastoral resources at different altidudinal belts are complementarily used at different seasons of a year and thus form the resources basis for agropastoral production of the study area. Migration distances and patterns vary with the location of the permanent settlements, the elevational distribution range of the resources of the villages concerned. Natural pastures (rangelands) are the main fodder resources and sumplement feedings only account for less than 5% of the total fodder consumption. Crop cultivation and pastoral activities support each other to form a complete livelihood system. The ability of the farmig lands (crop cultivation) to provide the pastoral activities with concentrates and sumplements often becomes a main factor limiting the scale of livestock production at household level. Agropastoral transhumance is experiencing drastic changes in recent decades as is reflected in the size and composition of animals, the seasonal migration pattern, the relative importance of pastoralism in the household economy and the interplays of agricultural and pastoral elements of the system. In general, there is a decline in animal population and mobility, a shift in animal composition to meet new needs arising from changed macro-economic situation, a decrease in the relative importance in the household economy and an increasing decoupling of agro&pastoral relations. The fundamental divers of these changes can be traced to environmental, social, economic, technological and cultural changes from local to global levels and such changes have further caused local changes in livestock management objectives, land use and distribution of labor forces. Changes in local livelihood systems could have profound political, socioeconomic, cultural and ecological conseuquences. Agropastoral transhumance, as an age-old traditional livelihood strategy, is facing multifacet challenges, such as winter fodder shortage, rangeland degradation, lack of market competitiveness, decrease in economic importance, lack of appreciation among the young generation and adequate policies from the government. At the same time, economic globalization, market economy, intrdoctution of new technologies, increase of alternative income generating opportunities and the national re-oreitation of policies on mountain ecosystems have all brought about new opportunities for the transformation of the traditional livelihood system and the synchronized development of local society and the environment. Agropastoral transhumance interacts with the ecosystems at the timberline and treeline ecotone mainly through the following aspects: 1)Animal browsing and stamping affect the regeneration process of the forest communities and alters the composition and structure of the forest which in turn affect the succession process and vegetation pattern of the forest communities. Forest edges are the priority locations for summer houses and therefore the timeline and treeline area becomes the major venues of aninal activities; (2)herders create, maintain and improve pastures through burning that remove the forest communities at the timeline and treeline ecotone; 3)immediate grazing on the fire sites can significantly prevent the fire sites from perogressive succession; and 4)herders harvesting of construction timber and firewoods affects the structure and functions of the forest communities at the timberline and treeline zone. Timberline position in the survey region shows geographical variations. It is around 4200-4300m in Meilixueshan, Baimaxueshan and Jiawuxueshan in Northwest of Yunnan and rises to 4300-4400m in Yajiang County and Litang County of Sichuan. In Rangtang of Sichuan, it is between 4100-4200m, though reaching 4300m in localized sites. In the southern and eastern slopes of Gongga Mountain, the timberline is only between 3600m and 3700m and in Songpan County at the upper reach of the Minjiang River the timberline is around 3700-3800m.Treeline pattern follows similar trend. In many places, agropastoral transhumance and related human activities have lowered the timberline and treeline and narrowed or removed the treeline ecotone. In the area of survey, generally speaking, timberlines and treelines are lower on the southern slopes than on the northern slopes, with a difference between 20 and 200m. This is mainly because that the use of fires to crerate pastures has removed the forest vegetation at the previous timberline and above. In fact, in many places, well-preserved forests on the south slopes have even high timberline position that the corresponding northern slopes. At subalpine zone, grazing activities could have prohibited the natural regeneration of many forest fire sites and maintained the forest position at the present level. Grazing has a significant impact on the regernation process of forest communities at the timberline zone. Natural timberline and treeline ecotone has much higher density of treeline species individuals especially the emergents and seedlings than the timberlines that are maintained by human activities. In natural timberline and treelien ecotone without grazing interference, the density of the I Class seedlings (less than 10cm in height) ranges 725-2917 /hm2; while that in the treatment plots (with grazing disturbance) is only 0-228//hm2;II Class seedlings (10-50cm)exhibit similar density trends, reaching 550-5208//hm2 in natural timberline without grazing but only 14-321//hm2 in the plots with grazing treatment. In the man-created timberlines, there is no I Class seedling at all in plots with normal grazing activities. In relative terms, in plots without grazing activities, the propotion of I Class and II Class seedlings is much higher than that in plots with grazing. Grazing activities have significantly reduced the number of seedlings in the timberline ane treeline ecotone, and thus affect the natural regeneration process of the forests. Shrubs at the timberline and treeline ecotone can effectively protect the seedlings from severe climate and animal tramping, thus increasing the survival rate of the seedlings. Grazing following fires can completely inhibit forest regeneration process at timberline. Changes in agropastoral transhumance will have great impact on the timberline and treeline pattern of the studied area. The decrease in grazing intensity on alpine pastrues and the cessation of the use of fires will result an increase in the cover and height of shrubs above the present human-maintained treeline, which will create further condition for the expansion of timberline forest communities. Eastern Tibet Plateau harbors some most important mountain ecosystems of China that are of vital importance to the country’s strategy in biodiversity conservation, environmental construction and sustainable sociaoeconomic development. A proper knowledge of the interactions between traditional livelihood systems and the ecosystems in the region is a precondition to the realization of the above strategic goals. Therefore, the decision-makers must have a holistic and systemic perspective so as to integrate the multiple objectives of promoting sustainable socioeconomic development, conserving biological and cultural diversity and maintaining the balances among people, animal population and the ecosystems.
Resumo:
人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。本项目以青杨组杨树为模式植物,从形态和生理方面研究了来自不同UV-B背景下的康定杨与青杨在增强UV-B下的反应及其反应差异,并探讨了干旱、施肥对它们抗UV-B能力的影响。杨树具有分布广、适应性强、在生态环境治理和解决木材短缺方面均占有重要位置,研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果有以下: 1. 在温室中经过增强UV-B处理,杨树的外部形态及生理活动受到了一定程度的影响。增强UV-B导致康定杨、青杨的生物量、叶面积及节间长度降低,叶片增厚,SOD活性升高,膜伤害增加,而对叶片数目、R/S、叶绿素A、叶绿素B及整个叶绿素含量没有影响。两种杨树对UV-B胁迫的响应存在差异:在增强UV-B条件下,青杨的植株高度、生物量、叶面积、脯氨酸含量、长期用水效率受到的影响大于康定杨,相比而言,康定杨在比叶面积、叶片厚度、可溶性糖含量、UV-B吸收物质的含量及SOD和GPX活性方面增加的程度大于青杨。这些区别说明,来自于高海拔的康定杨比来自于低海拔的青杨对增强UV-B 具有更强的耐性。我们认为二者在叶片厚度、比叶面积、UV-B吸收物质含量及SOD、GPX活性差异是导致对增强UV-B耐性不同的原因。 2. 干旱与增强UV-B对杨树的生长和生理特性均产生了影响,而且两种胁迫共同作用时干旱表现减弱或加剧了UV-B对杨树某些形态和生理特性的影响。 据试验结果,干旱显著地降低了杨树的株高、叶片数目、叶面积,增加了叶片厚度,促进ABA的积累,提高了CAT活性。对于干旱,两种杨树之间也表现出了一定的差异性。可溶性蛋白质和脯氨酸在青杨叶片中得到显著积累,而在康定杨中没有变化。此外,CAT、长期用水效率在康定杨中受到的影响更加明显。长期用水效率的不同变化趋势说明两种杨树对水分胁迫采用了不同的用水策略,康定杨采用的是节水用水策略,提高用水效率,而青杨采用的是耗水的用水策略。根据干旱对叶面积、脯氨酸、ABA含量、CAT活性及长期用水效率等方面的影响,我们认为来自高海拔地区的康定杨比来自低海拔的青杨有更大的耐旱性,这是对生长环境长期适应的结果。在高海拔地区,因霜冻常带来土壤水分不可利用,降低了根系对水分的吸收,树木容易受到的生理性干旱。另外,高海拔的地区低的气温使植株对严寒有较强的耐性,减少了水分的需要。 生长于增强UV-B下的康定杨和青杨植株表现为高度降低,叶面积缩小,比叶面积增加;叶片栅栏组织、海绵组织均受到增强UV-B的影响,其厚度的增加导致整个叶片变厚。增强UV-B还显著提高了杨树的APX活性、UV-B吸收物质含量,而对叶片数目、ABA、可溶性蛋白质含量及CAT活性没有产生影响。试验中也观察到了两种杨树对增强UV-B响应的差异:与康定杨相比,在增强UV-B下青杨株高、叶面积降低的程度更大一些,SOD活性显著提高。另外UV-B吸收物质受到的影响不同。根据这些差别,高海拔的康定杨(3500 m)比来自低海拔的青杨(1500 m)增强UV-B有较强的耐性。 与水分充足情况下UV-B对植株的影响相比,干旱对杨树抗增强UV-B产生了一定的影响,表现为加剧或减弱UV-B对植物的影响,但这种影响与形态、生理指标有关。当干旱与增强UV-B共同作用时,杨树植株的株高、叶面积进一步降低、叶片进一步增厚。就脯氨酸的积累的而言,在没有水分胁迫时,增强UV-B促使它显著增加,而在干旱处理下这种效果变得不明显。干旱对增强UV-B的影响还与杨树的种类有一定的关系。在康定杨中,干旱减弱了增强UV-B对栅栏组织与海绵组织的影响,且在植株高度、叶面积上表现出累加效应,而在CAT上交互作用显著;但在青杨中干旱则加剧增强UV-B对栅栏组织与海绵组织的影响,在植株高度、叶面积及比叶面积上表现出显著的交互作用。据碳同素分析,在水分充足的条件下,无论是康定杨,还是青杨,增强UV-B均导致其长期用水效率的提高,然而当两种胁迫共同作用时,长期用水效率则表现出差异,在青杨中,长期用水效率得到进一步增高,而康定杨中干旱的效应被增强UV-B所减轻。 3. 田间试验表明,杨树的生长、生理特征都受到养分和增强UV-B的影响。施肥对杨树的影响表现为:提高了叶面积、生物量及SOD的活性,降低了抗坏血酸含量。对于施肥作用,两种杨树的反应也有区别:在康定杨中施肥显著增加了的叶片长度、宽度及光合色素的含量,降低了净光合速率、气孔导度及胞间CO2浓度;在青杨中,则SOD、GPX、APX活性表现增加。从试验看出,施肥对来自于高海拔地区的康定杨(3500 m)的影响较大,对来自低海拔的青杨(1500 m)影响较小,这与它们对原产地的生境适应有一定关系。在康定杨生长的高海拔地区,低温度和湿度不能为地上凋落物或土壤中的根分解提供理想的条件,造成当地土壤的低养分状况,所以当肥料施用以后,效果显著。 经过增强UV-B处理,杨树叶片中UV-B吸收物质含量、GPX的活性得到提高,而脯氨酸、丙二醛、可溶性蛋白质、叶绿素及类胡萝卜素含量没有受到影响。对于增强UV-B两种杨树受到的影响也有所不同:在青杨中增强UV-B导致叶面积缩小,生物量、净光合速率降低,APX的活性及长期用水效率的提高,而对康定杨的这些指标没有产生显著影响,相反抗氧化酶的活性明显高于青杨。这些差异性是由于两种杨树对原产地不同UV-B背景的长期适应结果。康定杨长期生长在较高UV-B环境中,对UV-B有较强的耐性。而青杨适应于较低的UV-B环境,对增强UV-B较为敏感。 试验中施肥也影响了植株对增强UV-B的反应,不过这种影响与杨树的种类及测定指标有一定的相关性。例如,在缺肥的情况下,青杨的长期用水效率和康定杨的叶绿素含量都受到增强UV-B的显著影响,而施肥以后这种影响变得不显著。在缺肥的条件下,GPX、APX在青杨中的活性、GPX在康定杨中的活性对增加UV-B反应不敏感;而施肥以后则变化显著,同样胞间CO2浓度在康定杨也有类似的变化。 For past decades, Ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. In this experiment, different species of Populus section Tacamahaca Spach from different UV-B background were selected as a model plant to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B were observed and the different responses between P. kangdingensis and P. cathayana were discussed, furthermore the influences of drought and fertilizer on responses induced by enhanced UV-B were studied. Since poplars play an important role in lumber supply, and are important component of ecosystems due to their fast growth and wide adaptation, the study could provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem. The results are as follows: 1. The experiment conducted in a greenhouse indicated that morphological and physiological traits of two poplars were affected by enhanced UV-B radiation. Enhanced UV-B radiation not only reduced biomass, leave area and internode length, but also increased leaf thickness and SOD activity as well as MDA concentration and electrolyte rate. However, no significant changes in leaf numbers, root shoot ratio, and total chlorophyll and chlorophyll component were observed. There were different responses to enhanced UV-B radiation between two species. Compared with P. kangdingensis, cuttings of P. cathayana, exhibited lower height increment and smaller leaf area. In addition, there were significant differences in free proline, soluble protein, and UV-B absorbing compounds, and the activity of SOD and GPX, long-term WUE between them. Differences in plant height, biomass, leaf area, free proline concentration, and long-termed WUE showed that P. cathayana were more affected by enhanced UV-B radiation than P. kangdingensis. In contrast, more increase of specific leaf mass, leaf thickness, and soluble sugar, and UV-B absorbing compounds, and activity of SOD and GPX were observed in P. kangdingensis. According to these results, we suggested that P. kangdingensis from high elevation, which adapted to higher UV-B environments, had more tolerance to enhanced UV-B than P. cathayana from low elevation, which adapted to lower UV-B environment. We believe it was the difference of leaf thickness, specific leaf mass, and UV-B absorbing compounds as well as the activity of SOD and GPX resulted in lower adaptation of P. cathayana to enhanced UV-B radiation. 2. Growth and physiological traits of two poplars were affected by both drought and enhanced UV-B radiation. Moreover, it was observed that when two stresses applied together drought could exacerbate UV-B effects or decrease sensitivity to UV-B. In the experiment, drought significantly decreased plant height, leaf numbers, leaf area, and increased leaf thickness, and ABA, and CAT activity of two poplars. There were significant interspecific differences to drought stress. Exposed to drought, soluble protein and proline concentration were increased in P. cathayana but not in P. kangdingensis. However, more changes in CAT and long-term WUE were observed in kangdingensis. Different change in long-term WUE suggests that two poplars adapted different water-use strategies. P. kangdingensis employ a conservative water-use strategy, whereas P. cathayana employ a prodigal water-use strategy. Based on the differences in leaf area, accumulation of free proline and ABA, CAT activity as well as long-term WUE, we believed that P. kangdingensis from high elevation had a greater tolerance to drought than P. cathayana from low elevation,which is the result of adaptation to local environment. In high elevation area, trees are prone to suffer from physiological drought because of un-movable water caused by frost. Besides lower temperature enable the plants had greater adaptability to frost as a results the requirement of water is reduced Enhanced UV-B radiation decreased shoots height, leaf area, and increased specific leaf mass and thickness of palisade and sponge layer as well as APX activity and UV-B absorbing compounds in both species. Whereas, leaf numbers, ABA content, soluble protein and CAT activity showed no differences to enhanced UV-B radiation. Interspecific differences were also observed. Compared with P. kangdingensis, P. cathayana showed lower shoot height and smaller leaf area, higher SOD activity. Besides, variation in UV-B absorbing compounds was found. These differences suggested that P. kangdingensis from high elevation (3500 m) was more tolerant to enhanced UV-B radiation than P. cathayana from low elevation (1500 m). Compared with morphological and physiological changes induced by enhanced UV-B radiation under well-watered conditions, drought exacerbated or decreased these changes. However, these effects vary with parameters measured. When two stresses applied together, shoot height and leaf area further decreased while leaf thickness further increased. Under well-watered conditions, enhanced UV-B radiation significantly increased proline content, but such effect was not observed under drought conditions. The effect of drought on enhanced UV-B radiation was related to species. For example, drought reduced the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll in P. kangdingensis, and additive effects in shoot height and leaf area and interactive effect CAT activity were observed. In contrast, for P. cathayana drought significantly exacerbated the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll; there were noticeable interaction in shoot height, leaf area and specific leaf mass. As far as long-term WUE is concerned, it was increased by enhanced UV-B radiation under well-watered conditions in both species. While different effect was observed between two species in combination of two stresses. Long-term water use efficiency was further increased in P. cathayana whereas the effect was less significant in P. kangdingensis. 3. The field experiment showed that growth and physiological traits of poplars were affected by nutrition and enhanced UV-B radiation. Fertilization significantly increased leaf area, biomass and SOD activity, reduced Ascorbic acid concentration. There was interspecific difference in response to fertilization. For P. kangdingensis, fertilization significantly increased leaf width, leaf length and photosynthetic pigments content while net photosynthetic rate and stomatal conductance, intercellular CO2 concentration were significantly decreased. However, for P. cathayana, these parameters were unaffected except the increase of SOD, GPX and APX activity. From above, it could concluded that P. kangdingensis from high elevation was more affected by fertilization than P. cathayana, This difference was due to adaptation to local environment., The low temperature and moisture where P. kangdingensis was collected can not provided optimum to decompose roots and litter fall as a result the nutrition in soil was poor. Exposed to enhanced UV-B radiation, for both species UV-B absorbing compounds and GPX activity were significantly increased while proline, MDA, soluble protein, chlorophyll, carotenoids were not affected. Different responses were also observed between the two species. Enhanced UV-B radiation caused significant decreases in leaf area, biomass, net photosynthetic rate and increase in APX activity and long-term WUE in P. cathayana but not in P. kangdingensis. In addition, activity in antioxidant enzymes was much higher in P. kangdingensis than in P. cathayana. In the experiment fertilization affected responses of cuttings to enhanced UV-B radiation, but it concern species and parameters measured. Long-term WUE in P. cathayana and chlorophyll in P. kangdingensis were significantly increased by enhanced UV-B radiation under non-fertilization treatments while the increase was not found under fertilization treatment. In contrast, under no fertilization treatment enhanced UV-B radiation did not affected GPX and APX activity in P. cathayana and GPX in P. kangdingensis while significant increase appeared after application of fertilization. Similar effect of enhanced UV-B radiation on intercellular CO2 concentration in P. kangdingensis was observed.