231 resultados para rainfall generation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organized generation of transverse waves associated with the transverse wave instabilities at a diverging cylindrical detonation front was numerically studied by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. After solution validation, four mechanisms of the transverse wave generation were identified from numerical simulations, and referred to as the concave front focusing, the kinked front evolution, the wrinkled front evolution and the transverse wave merging, respectively. The propagation of the cylindrical detonation is maintained by the growth of the transverse waves that match the rate of increase in surface area of the detonation front to asymptotically approach a constant average number of transverse waves per unit length along the circumference of the detonation front. This cell bifurcation phenomenon of cellular detonations is discussed in detail to gain better understanding on detonation physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the finite element method and the limit equilibrium method, a numerical model has been estab-lished for examining the effects of rainfall infiltration on the stability of slopes. This model is able to reflect the variations in pore water pressure field in slopes, dead weight of the soil, and soil softening caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing was studied to analyze the effects of rainfall infiltration on the seepage field and slope sta-bility. The simulated results showed that a deep slope failure is prone to occur when rainfall infiltration leads to a remarkable variation in the seepage field, especially when the pore water pressure in slopes increases in a large range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction and estimate of water and soil loss is fundamental important for understanding the effect of the spatial heterogeneity of underlying surfaces and preventing ecological environment deterioration. In this paper, a dynamic model of runoff and sediment yield in small watersheds is established. The proposed model includes three components: runoff generation caused by rainfall, soil erosion on hillslopes by overland flow, and runoff concentration and sediment transport on watersheds. Applying the proposed model, the runoff and sediment yield processes in a typical catchment on the loess plateau was estimated, which exhibited a good agreement between predicted results and observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proposed that single attosecond pulses be generated via high-order harmonic generation by using a two-color pump pulse with time dependent ellipticity. The two-color pump pulse is created by the fundamental field and its second harmonic: the fundamental field is left-circularly polarized and the second harmonic is right-circularly polarized. Numerical simulations show that single attosecond pulses can be produced in the cut-off region by using the synthesis of 20 fs left-hand and right-hand circularly polarized pulses with a pulse delay of 20 fs. The attosecond pulses produced this way are much stronger than that produced by a few-cycle linear polarized pulse of comparable intensity. (c) 2005 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear propagation of fs laser pulses in liquids and the dynamic processes of filamentation such as self-focusing, intensity clamping, and evolution of white light production have been analyzed by using one- and two-photon fluorescence. The energy losses of laser pulses caused by multiphoton absorption and conical emission have been measured respectively by z-scan technique. Numerical simulations of fs laser propagation in water have been made to explain the evolution of white light production as well as the small-scale filaments in liquids we have observed by a nonlinear fluorescence technique. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical investigation on the nonlinear pulse propagation and dispersive wave generation in the anomalous dispersion region of a microstructured fiber is presented. By simulating the dispersive wave generation under different conditions. it is found that the generation mechanism of the dispersive wave is mainly due to the pulse trapping across the zero-dispersion wavelength. By varying the initial pulse chirp, the output spectrum can be broadened and the intensity of the dispersive wave can be obviously enhanced. In particular, there exists an optimal positive chirp which maximizes the intensity of the dispersive wave. This effect can be explained by the energy transfer from the Raman soliton to the dispersive wave due to the effect of the pulse trapping and the effect of the higher-order dispersion. From the phase aspect, the explanation of this effect is also included. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the mixing of pulsed two color fields on the generation of an isolated attosecond pulse has been systematically investigated. One main color is 800 nm and the other color (or secondary color) is varied from 1.2 to 2.4 mu m. This work shows that the continuum length behaves in a similar way to the behavior of the difference in the square of the amplitude of the strongest and next strongest cycle. As the mixing ratio is increased, the optimal wavelength for the extended continuum shifts toward shorter wavelength side. There is a certain mixing ratio of intensities at which the continuum length bifurcates, i.e., the existence of two optimal wavelengths. As the mixing ratio is further increased, each branch bifurcates again into two sub-branches. This 2D map analysis of the mixing ratio and the wavelength of the secondary field easily allows one to select a proper wavelength and the mixing ratio for a given pulse duration of the primary field. The study shows that an isolated sub-100 attosecond pulse can be generated mixing an 11 fs full-width-half-maximum (FWHM), 800 laser pulse with an 1840 nm FWHM pulse. Furthermore the result reveals that a 33 fs FWHM, 800 nm pulse can produce an isolated pulse below 200 as, when properly mixed. (c) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the carrier-envelope phase (CEP) of the driving laser pulse on the generation of single attosecond (as) pulses from surface harmonics by using the polarization gating technique is investigated in detail. It is found that the modulation depth of the high-order harmonic spectrum depends on the CEP, and a strong single 68 as pulse can be generated when the CEP is stable and has the proper value. The physical origin of the influence of the CEP is explained in terms of the oscillating mirror model. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2997342]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Confinement of electromagnetic energy into a single well-controlled oscillation of light is very important for generation of intense supercontinuum radiation. We find that the pulse breakup of few-cycle ultrashort laser pulses via resonant propagation effects can achieve this aim. By extracting such pulses and then focusing them to drive the He atoms, about 200 eV intense supercontinuum radiation can be generated, which is capable of supporting similar to 20 attosecond isolated pulse generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion acceleration by ultrashort circularly polarized laser pulse in a solid-density target is investigated using two-dimensional particle-in-cell simulation. The ions are accelerated and compressed by the continuously extending space-charge field created by the evacuation and compression of the target electrons by the laser light pressure. For a sufficiently thin target, the accelerated and compressed ions can reach and exit from the rear surface as a high-density high-energy ion bunch. The peak ion energy depends on the target thickness and reaches maximum when the compressed ion layer can just reach the rear target surface. The compressed ion layer exhibits lateral striation which can be suppressed by using a sharp-rising laser pulse. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate experimentally the high-order harmonic generation from aligned CO2 molecules and demonstrate that the modulation inversion of the harmonic yield with respect to molecular alignment can be altered dramatically by fine-tuning the intensity of the driving laser pulse for harmonic generation. The results can be modeled by employing the strong field approximation including a ground state depletion factor. The laser intensity is thus proved to be a parameter that can control the high-harmonic emission from aligned molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acoustic-optics programmable dispersive filter (AOPDF) was first employed to actively control the linearly polarized femtosecond pump pulse frequency chirp for supercontinuum (SC) generation in a high birefringence photonic crystal fiber (PCF). By accurately controlling the second order phase distortion and polarization direction of incident pulses, the output SC spectrum can be tuned to various spectral energy distributions and bandwidths. The pump pulse energy and bandwidth are preserved in our experiment. It is found that SC with broader bandwidth can be generated with positive chirped pump pulses except when the chirp value is larger than the optimal value, and the same optimal value exists for the pump pulses polarized along the two principal axes. With optimal positive chirp, more than 78% of the pump energy can be transferred to below 750 nm. Otherwise, negative chirp will weaken the blue-shift broadening and the SC bandwidth. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using conventional methods, a laser pulse can be focused down to around 6-8 mu m, but further reduction of the spot size has proven to be difficult. Here it is shown by particle-in-cell simulation that with a hollow cone an intense laser pulse can be reduced to a tiny, highly localized, spot of around 1 mu m radius, accompanied by much enhanced light intensity. The pulse shaping and focusing effect is due to a nonlinear laser-plasma interaction on the inner surface of the cone. When a thin foil is attached to the tip of the cone, the cone-focused light pulse compresses and accelerates the ions in its path and can punch through the thin target, creating highly localized energetic ion bunches of high density.