167 resultados para quantum turbulence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The failure of hydraulic structures in many estuaries and coastal regions around the world has been attributed to sediment transport and local scour. The sediment incipience in homogenous turbulence generated by oscillating grid is studied in this paper. The turbulent flow is measured by particle tracer velocimetry (PTV) technique. The integral length scale and time scale of turbulence are obtained. The turbulent flow near the wall is measured by local optical magnification. The sediment incipience is described by static theory. The relationship of probability of sediment incipience and the turbulent kinetic energy were obtained experimentally and theoretically. The distribution of the turbulent kinetic energy near the wall is found to obey the power law and the turbulent energy is further identified as the dynamic mechanism of sediment incipience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we use a simple normal form approach of scale invariant fields to investigate scaling laws of passive scalars in turbulence. The coupling equations for velocity and passive scalar moments are scale covariant. Their solution shows that passive scalars in turbulence do not generically follow a general scaling observed for velocity field because of coupling effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimized trial functions are used in quantum Monte Carlo and variational Monte Carlo calculations of the Li2(X 1Σ+g) potential curve. The trial functions used are a product of a Slater determinant of molecular orbitals multiplied by correlation functions of electron—nuclear and electron—electron separation. The parameters of the determinant and correlation functions are optimized simultaneously by reducing the deviations of the local energy EL (EL  Ψ−1THΨT, where ΨT denotes a trial function) over a fixed sample. At the equilibrium separation, the variational Monte Carlo and quantum Monte Carlo methods recover 68% and 98% of the correlation energy, respectively. At other points on the curves, these methods yield similar accuracies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented in this paper is an experimental study on the characteristics of the turbulence produced by rising air bubbles in water. The measurements of turbulent velocities were made by using visualization technique of particle streak and computer image processing of the flow field. The turbulence features have been examined, showing that the rising bubble-produced turbulence can be approximately modeled by homogeneous turbulence as in the case of grid turbulence in air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for optimizing tried wave functions in quantum Monte Carlo method has been found and used to calculate the energies of molecules, such as H-2, Li-2, H-3+, H-3 and H-4. Good results were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variational approach to the closure problem of turbulence theory, proposed in an earlier article [Phys. Fluids 26, 2098 (1983); 27, 2229 (1984)], is extended to evaluate the flatness factor, which indicates the degree of intermittency of turbulence. Since the flatness factor is related to the fourth moment of a turbulent velocity field, the corresponding higher-order terms in the perturbation solution of the Liouville equation have to be considered. Most closure methods discard these higher-order terms and fail to explain the intermittency phenomenon. The computed flatness factor of the idealized model of infinite isotropic turbulence ranges from 9 to 15 and has the same order of magnitude as the experimental data of real turbulent flows. The intermittency phenomenon does not necessarily negate the Kolmogorov k−5/3 inertial range spectrum. The Kolmogorov k−5/3 law and the high degree of intermittency can coexist as two consistent consequences of the closure theory of turbulence. The Kolmogorov 1941 theory [J. Fluid Mech. 62, 305 (1974)] cannot be disqualified merely because the energy dissipation rate fluctuates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical statistical mechanics is applied to the study of a passive scalar field convected by isotropic turbulence. A complete set of independent real parameters and dynamic equations are worked out to describe the dynamic state of the passive scalar field. The corresponding Liouville equation is solved by a perturbation method based upon a Langevin–Fokker–Planck model. The closure problem is treated by a variational approach reported in earlier papers. Two integral equations are obtained for two unknown functions: the scalar variance spectrum F(k) and the effective damping coefficient (k). The appearance of the energy spectrum of the velocity field in the two integral equations represents the coupling of the scalar field with the velocity field. As an application of the theory, the two integral equations are solved to derive the inertial-convective-range spectrum, obtaining F(k)=0.61 −1/3 k−5/3. Here is the dissipation rate of the scalar variance and is the dissipation rate of the energy of the velocity field. This theoretical value of the scalar Kolmogorov constant, 0.61, is in good agreement with experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of statistical mechanics is applied to the study of the one-dimensional model of turbulence proposed in an earlier paper. The closure problem is solved by the variational approach which has been developed for the three-dimensional case, yielding two integral equations for two unknown functions. By solving the two integral equations, the Kolmogorov k−5/3 law is derived and the (one-dimensional) Kolmogorov constant Ko is evaluated, obtaining Ko=0.55, which is in good agreement with the result of numerical experiments on one-dimensional turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt is made to determine the form of F(x), the dimensionless function of universal nature which occurs in the energy spectrum for the universal equilibrium range of fully developed turbulence, by the method of statistical mechanics without introducing any parameter of semiempirical nature. Then, the validity of the variational approach to the closure problem of turbulence theory is tested by applying it to the study of the universal equilbrium range of turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial-value problem of a forced Burgers equation is numerically solved by the Fourier expansion method. It is found that its solutions finally reach a steady state of 'laminar flow' which has no randomness and is stable to disturbances. Hence, strictly speaking, the so-called Burgers turbulence is not a turbulence. A new one-dimensional model is proposed to simulate the Navier-Stokes turbulence. A series of numerical experiments on this one-dimensional turbulence is made and is successful in obtaining Kolmogorov's (1941) k exp(-5/3) inertial-range spectrum. The (one-dimensional) Kolmogorov constant ranges from 0.5 to 0.65.