39 resultados para propene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic cracking of butene over potassium modified ZSM-5 catalysts was carried out in a fixed-bed microreactor. By increasing the K loading on the ZSM-5, butene conversion and ethene selectivity decreased almost linearly, while propene selectivity increased first, then passed through a maximum (about 50% selectivity) with the addition of ca. 0.7-1.0% K, and then decreased slowly with further increasing of the K loading. The reaction conditions were 620 degrees C, WHSV 3.5 h(-1), 0.1 MPa 1-butene partial pressure and 1 h of time on stream. Both by potassium modification of the ZSM-5 zeolite and by N(2) addition in the butene feed could enhance the selectivity towards propene effectively, but the catalyst stability did not show any improvement. On the other hand, addition of water to the butene feed could not only increase the butene conversion, but also improve the stability of the 0.7%K/ZSM-5 catalyst due to the effective removal of the coke formed, as demonstrated by the TPO spectra. XRD results indicated that the ZSM-5 structure of the 0.07% K/ZSM-5 catalyst was not destroyed even under this serious condition of adding water at 620 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of new titanium complexes with two asymmetric bidentate beta-enaminoketonato (N,O) ligands (4b-t), [RN=CCF3)CHC(t-BU)O](2)TiCl2 (4b, R = -C6H4F(o); 4c, R = -C6H4F(m);4d, R = -C6H4F(p); 4e, R = - C6H3F2(2,3); 4f, R = -C6H3F2(2,4); 4g, R = -C6H3F2(2,5); 4h, R = -C6H3F2(2,6); 4i, R = -C6H3F2(3,4); 4j, R = -C6H3F2(3,5); 4k, R = -C6H2F3(2,3,4); 4l, R = -C6H2F3(3,4,5); 4m, R = -C6H4CF3(o); 4n, R =-C6H4CF3(m); 4o, R = -C6H4CF3(p); 4p, R = -C6H4Cl(p); 4q, R = -C6H4I(p); 4r, R = -C6H4NO2(P); 4s, R = -CH2C6H5; 4t, R = -C6H11), have been synthesized and characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystallization behavior of two kinds of commercial poly(propylene-co-ethylene)s (PPE1, PPE2) with similar average molecular weight and molecular weight distribution, isotacticity and copolymerized ethylene unit content and their fractions was investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and polarized optical microscopy (POM) techniques. The results indicate that the PPE1 isothermally crystallized films possess thicker and less cross-hatched lamellar structure than those of the PPE2. As for the fractionated samples, the thin films of low temperature (less than or equal to 90 degreesC) fractions (PPE1-80, PPE2-80) of both PPE1 and PPE2 exhibit similar crystallization behavior, while for the high temperature ( greater than or equal to 95 degreesC) fractions (PPE1-108, PPE2-108), the crystalline morphology has marked differences. Compared with PPE2-108, the PPE1-108 isothermally crystallized thin films possess thicker lamellae and less crosshatched lamellar structure, while for the fibrous crystal number, the former is less than that of the latter. The main reason to create the crystallization behavior differences between the two PPEs and their fractions is due to the effect of molecular chain structure, i.e. the different distribution of copolymerized ethylene unit in polypropylene chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconocene catalyst was heterogenized inside an organosilane-modified montmorillonite (MMT) pretreated by calcination and acidization, for supported catalyst systems with well-spaced alpha-olefin polymerization active centers. The varied pretreatment and modification conditions of montmorillonite are efficient for supported zirconocene catalysts in control of polyethylene microstructures, in particular, molecular weight distribution. In contrast to other supported catalyst systems, Cp2ZrCl2/modified montmorillonite(MMT-7)-supported catalysts with a distinct interlayer structure catalyzed ethylene homopolymerization and copolymerization with I-octene activated by methylaluminoxane (MAO), resulting in polymers with a bimodal molecular weight distribution (MWD).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH =CHCH2)CH3Si(C5H4)(2)]TiCl2 (1), [(CH2=CHCH2)CH3Si(C9H6)(2)]MCl2 [M = Ti (2), Zr (3), Hf (4)] and [(CH2=CHCH2)CH3Si(C13H8)(2)]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 10(6) g PE mol(-1) M h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler-Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

中国科学院山西煤炭化学研究所

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new polymer-supported metallocene catalyst has been prepared, The polymer-supported metallocene displayed considerably high activity in ethylene polymerization, the highest being 3.62x10(7) gPE/molZr.h, the molecular weight of the polyethylene produced was Mn = 1.29x10(5). about 3-4 times those of corresponding homogeneous zirconocenes. The polymer-supported metallocene keeps the characteristics of homogeneous metallocene catalysts, and offers some features, such as adaptable to gas phase and slurry processes: easy to prepare in low cost: relatively high activity and lower MAO/Zr ratio; lower inorganic residues in the polyolefins as compared to cases of SiO2, Al2O3 or MgCl2; unitary active structure, no complex surface as with SiO2; good control of morphology of the resulting polymer.