24 resultados para principal component analysis (PCA)
Resumo:
Sixteen polycyclic aromatic hydrocarbons (PAHs) and 28 polychlorinated biphenyls (PCBs) were measured at a 2-cm interval in a core sample from the middle of the southern Yellow Sea for elucidating their historical variations in inflow and sources. The chronology was obtained using the Pb-210 method. PAHs concentrations decreased generally with depth and two climax values occurred in 14-16 cm and 20-22 cm layers, demonstrating that the production and usage of PAHs might reach peaks in the periods of 1956-1962 and 1938-1944. The booming economy and the navy battles of the Second World War might explain why the higher levels were detected in the two layers. The result of principal component analysis (PCA) revealed that PAHs were primarily owing to the combustion product. Down-cored variation of PCB concentrations was complex. Higher concentrations besides the two peaks being the same as PAHs were detected from 4 to 8 cm, depositing from 1980 to 1992, which probably resulted from the disposal of the out-dated PCB-containing equipment. The average Cl percentage of PCBs detected was similar to that of the mixture of Aroclor 1254 and 1242, suggesting they might origin from the dielectrical and heat-transfer fluid. The total organic carbon (TOC) content played a prevalent role in the adsorption of high molecular weight PAHs (>= 4-ring), while no obvious relationship among total PCBs, the concentration of congeners, and TOC was found.
Resumo:
Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
成分分析(PCA)只能从2阶上去消除数据的相关性,传统支持向量机在解决多类问题时会出现分类的盲区问题,针对这两种情况,首先采用独立成分分析(ICA)方法解决了高阶上的数据相关性问题;同时在传统支持向量机中引入模糊隶属度函数,用模糊支持向量机解决了传统支持向量机在多类数据识别中的盲区问题。通过实验证明了该方法在人脸识别率上取得了显著提高。
Resumo:
Conventional seismic attribute analysis is not only time consuming, but also has several possible results. Therefore, seismic attribute optimization and multi-attribute analysis are needed. In this paper, Fuyu oil layer in Daqing oil field is our main studying object. And there is much difference between seismic attributes and well logs. So under this condition, Independent Component Analysis (ICA) and Kohonen neural net are introduced to seismic attribute optimization and multi-attribute analysis. The main contents are as follows: (1) Now the method of seismic attribute compression is mainly principal component analysis (PCA). In this article, independent component analysis (ICA), which is superficially related to PCA, but much more powerful, is used to seismic reservoir characterizeation. The fundamental, algorithms and applications of ICA are surveyed. And comparation of ICA with PCA is stydied. On basis of the ne-entropy measurement of independence, the FastICA algorithm is implemented. (2) Two parts of ICA application are included in this article: First, ICA is used directly to identify sedimentary characters. Combined with geology and well data, ICA results can be used to predict sedimentary characters. Second, ICA treats many attributes as multi-dimension random vectors. Through ICA transform, a few good new attributes can be got from a lot of seismic attributes. Attributes got from ICA optimization are independent. (3) In this paper, Kohonen self-organizing neural network is studied. First, the characteristics of neural network’s structure and algorithm is analyzed in detail, and the traditional algorithm is achieved which has been used in seism. From experimental results, we know that the Kohonen self-organizing neural network converges fast and classifies accurately. Second, the self-organizing feature map algorithm needs to be improved because the result of classification is not very exact, the boundary is not quite clear and the velocity is not fast enough, and so on. Here frequency sensitive principle is introduced. Combine it with the self-organizing feature map algorithm, then get frequency sensitive self-organizing feature map algorithm. Experimental results show that it is really better. (4) Kohonen self-organizing neural network is used to classify seismic attributes. And it can be avoided drawing confusing conclusions because the algorithm’s characteristics integrate many kinds of seismic features. The result can be used in the division of sand group’s seismic faces, and so on. And when attributes are extracted from seismic data, some useful information is lost because of difference and deriveative. But multiattributes can make this lost information compensated in a certain degree.
Resumo:
We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.
Resumo:
Mammographic mass detection is an important task for the early diagnosis of breast cancer. However, it is difficult to distinguish masses from normal regions because of their abundant morphological characteristics and ambiguous margins. To improve the mass detection performance, it is essential to effectively preprocess mammogram to preserve both the intensity distribution and morphological characteristics of regions. In this paper, morphological component analysis is first introduced to decompose a mammogram into a piecewise-smooth component and a texture component. The former is utilized in our detection scheme as it effectively suppresses both structural noises and effects of blood vessels. Then, we propose two novel concentric layer criteria to detect different types of suspicious regions in a mammogram. The combination is evaluated based on the Digital Database for Screening Mammography, where 100 malignant cases and 50 benign cases are utilized. The sensitivity of the proposed scheme is 99% in malignant, 88% in benign, and 95.3% in all types of cases. The results show that the proposed detection scheme achieves satisfactory detection performance and preferable compromises between sensitivity and false positive rates.
Resumo:
The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.