18 resultados para population research
Resumo:
As the only remainder type of phycobiliproteins in Prochlorococcus, the actual role of phycoerythrin still remains unknown. Previous studies revealed that two different forms of phycoerythrin gene were found in two ecotypes of Prochlorococcus that are specifically adapted to either high light (HL) or low light (LL) conditions. Here we analyze patterns of phycoerythrin nucleotide variation in the HL- and LL-Prochlorococcus populations. Our analyses reveal a significantly greater number of non-synonymous fixed substitutions in peB and peA than expected based on interspecific comparisons. This pattern of excess non-synonymous fixed substitutions is not seen in other five phycoerythrin-related genes (peZ/V/Y/T/S). Several neutrality statistical tests indicate an excess of rare frequency polymorphisms in the LL-Prochlorococcus data, but an excess of intermediate frequency polymorphisms in the HL-Prochlorococcus data. Distributions of the positively selected sites identified using the likelihood ratio test, when mapped onto the phycoerythrin tertiary structure, reveal that HL- and LL-phycoerythrin should be under different selective patterns. These findings may provide insights into the likely role of selection at the phycoerythrin locus and motivate further research to unveil the function of phycoerythrin in Prochlorococcus.
Resumo:
Crassostrea ariakensis is an important aquacultured oyster species in Asia, its native region. During the past decade, consideration was given to introducing C. ariakensis into Chesapeake Bay, in the United States, to help revive the declining native oyster industry and bolster the local ecosystem. Little is known about the ecology and biology of this species in Asia due to confusion with nomenclature and difficulty in accurately identifying the species of wild populations in their natural environment. Even less research has been done on the population genetics of native populations of C. ariakensis in Asia. We examined the magnitude and pattern of genetic differentiation among 10 wild populations of C. ariakensis from its confirmed distribution range using eight polymorphic microsatellite markers. Results showed a small but significant global theta (ST) (0.018), indicating genetic heterogeneity among populations. Eight genetically distinct populations were further distinguished based on population pairwise theta (ST) comparisons, including one in Japan, four in China, and three populations along the coast of South Korea. A significant positive association was detected between genetic and geographic distances among populations, suggesting a genetic pattern of isolation by distance. This research represents a novel observation on wild genetic population structuring in a coastal bivalve species along the coast of the northwest Pacific.
Resumo:
A base population of the bay scallop, Argopecten irradians irradians Lamarck, was produced by crossing two cultured bay scallop populations. After 1 year of rearing, the top 10% truncation selection of the top 10% (i=1.755) was carried out in the base population of about 1300 adults. A control parental group with a an identical number to the select parental group was randomly selected from the entire population before isolation of the select parental group. The result showed that, at the larval stage, the growth rate of larvae in the selected line was significantly higher than that of the control (P < 0.05), and that the genetic gain was 6.78%. Owing to the lower density of control at the spat stage, the mean shell length of the control line was larger than that of the select line at day 100. When the same density was adjusted between two lines in the grow-out stage (from day 100 to 160), the daily growth rate of the selected line was significantly higher than that of the control line (P < 0.05). Survival of the select line was significantly larger than that of the control line in the grow-out stage. In conclusion, the results obtained from this experiment indicate that selective breeding from a base population with a high genetic diversity established by mass spawning between different populations appears to be a promising method of genetic improvement in bay scallop, A. irradians irradians Lamarck.