24 resultados para population and population related phenomena
Resumo:
Largemouth bronze gudgeon (Coreius guichenoti) is a medium-sized fish endemic from the upper Yangtze River of China and its survival is threatened by the construction of the Three Gorges Dam. This study reports 20 new polymorphic microsatellites from a repeat-enriched genomic library with a mean number allele of 5.2, and observed and expected heterozygosities ranging from 0.035 to 1, and from 0.13 to 0.917, respectively. In a cross-species amplification test, nine of the 37 tested loci were found to be also polymorphic in a congeneric species, brass gudgeon (C. heterodon). In addition, other four loci from common carp (Cyprinus carpio) were also polymorphic in C. guichenoti. Out of these 24 polymorphic microsatellites, only three loci significantly deviated from Hardy-Weinberg equilibrium in the sampled population (P < 0.0025), and all pairwise tests for linkage disequilibrium among loci were nonsignificant after applying sequential Bonferroni correction (P > 0.0026). These novel microsatellites provide sufficient levels of polymorphism for studies on population genetics and conservation in C. guichenoti and its related species.
Resumo:
Table of Contents
1 | Introduction | 1 |
1.1 | What is an Adiabatic Shear Band? | 1 |
1.2 | The Importance of Adiabatic Shear Bands | 6 |
1.3 | Where Adiabatic Shear Bands Occur | 10 |
1.4 | Historical Aspects of Shear Bands | 11 |
1.5 | Adiabatic Shear Bands and Fracture Maps | 14 |
1.6 | Scope of the Book | 20 |
2 | Characteristic Aspects of Adiabatic Shear Bands | 24 |
2.1 | General Features | 24 |
2.2 | Deformed Bands | 27 |
2.3 | Transformed Bands | 28 |
2.4 | Variables Relevant to Adiabatic Shear Banding | 35 |
2.5 | Adiabatic Shear Bands in Non-Metals | 44 |
3 | Fracture and Damage Related to Adiabatic Shear Bands | 54 |
3.1 | Adiabatic Shear Band Induced Fracture | 54 |
3.2 | Microscopic Damage in Adiabatic Shear Bands | 57 |
3.3 | Metallurgical Implications | 69 |
3.4 | Effects of Stress State | 73 |
4 | Testing Methods | 76 |
4.1 | General Requirements and Remarks | 76 |
4.2 | Dynamic Torsion Tests | 80 |
4.3 | Dynamic Compression Tests | 91 |
4.4 | Contained Cylinder Tests | 95 |
4.5 | Transient Measurements | 98 |
5 | Constitutive Equations | 104 |
5.1 | Effect of Strain Rate on Stress-Strain Behaviour | 104 |
5.2 | Strain-Rate History Effects | 110 |
5.3 | Effect of Temperature on Stress-Strain Behaviour | 114 |
5.4 | Constitutive Equations for Non-Metals | 124 |
6 | Occurrence of Adiabatic Shear Bands | 125 |
6.1 | Empirical Criteria | 125 |
6.2 | One-Dimensional Equations and Linear Instability Analysis | 134 |
6.3 | Localization Analysis | 140 |
6.4 | Experimental Verification | 146 |
7 | Formation and Evolution of Shear Bands | 155 |
7.1 | Post-Instability Phenomena | 156 |
7.2 | Scaling and Approximations | 162 |
7.3 | Wave Trapping and Viscous Dissipation | 167 |
7.4 | The Intermediate Stage and the Formation of Adiabatic Shear Bands | 171 |
7.5 | Late Stage Behaviour and Post-Mortem Morphology | 179 |
7.6 | Adiabatic Shear Bands in Multi-Dimensional Stress States | 187 |
8 | Numerical Studies of Adiabatic Shear Bands | 194 |
8.1 | Objects, Problems and Techniques Involved in Numerical Simulations | 194 |
8.2 | One-Dimensional Simulation of Adiabatic Shear Banding | 199 |
8.3 | Simulation with Adaptive Finite Element Methods | 213 |
8.4 | Adiabatic Shear Bands in the Plane Strain Stress State | 218 |
9 | Selected Topics in Impact Dynamics | 229 |
9.1 | Planar Impact | 230 |
9.2 | Fragmentation | 237 |
9.3 | Penetration | 244 |
9.4 | Erosion | 255 |
9.5 | Ignition of Explosives | 261 |
9.6 | Explosive Welding | 268 |
10 | Selected Topics in Metalworking | 273 |
10.1 | Classification of Processes | 273 |
10.2 | Upsetting | 276 |
10.3 | Metalcutting | 286 |
10.4 | Blanking | 293 |
Appendices | 297 | |
A | Quick Reference | 298 |
B | Specific Heat and Thermal Conductivity | 301 |
C | Thermal Softening and Related Temperature Dependence | 312 |
D | Materials Showing Adiabatic Shear Bands | 335 |
E | Specification of Selected Materials Showing Adiabatic Shear Bands | 341 |
F | Conversion Factors | 357 |
References | 358 | |
Author Index | 369 | |
Subject Index | 375 |
Crossmodal effects of Guqin and piano music on selective attention: An event-related potential study
Resumo:
To compare the effects of music from different cultural environments (Guqin: Chinese music; piano: Western music) on crossmodal selective attention, behavioral and event-related potential (ERP) data in a standard two-stimulus visual oddball task were reco
Resumo:
Twelve restriction endonucleases were employed to analyze the mitochondrial DNA of four species of muntjacs and two related species of deer: red muntjac (M. muntjak), Gongshan muntjac (M. gongshanensis), black muntjac (M. crinifrons), Chinese muntjac (M. reevesi), tufted deer (Elaphodus cephalophus), and forest musk deer (Moschus berezovskii). A total of 170 restriction fragments were detected among the samples. Fragments data were used to calculate the genetic distance (i.e. percent sequence divergency) among species, which in turn were used to construct a phylogenetic tree and to estimate divergency times. Our analysis indicates that the black muntjac and the Gongshan muntjac are most closely related, and that they are closely realted to the red muntjac and the Chinese muntjac. Additionally, the tufted deer is genetically closer to muntjacs than the musk deer is.
Resumo:
To observe changes in the concentrations of size-fractionated iron and related environmental factors, experiments were conducted in the northeastern part of the shallow eutrophic lake Dianchi (China) from March 2003 to February 2004. Iron concentrations were measured for three size fractions: particulate iron (phi >0.22 mu m), colloidal iron (phi = 0.025-0.22 mu m) and soluble iron (phi < 0.025 mu m), and environmental factors (physicochemical and biological factors) were synchronously analyzed. Results showed that size-fractionated iron and the related environmental factors all varied with season. Colloidal iron accounted for only 5-9% of total iron, while particulate and soluble iron each accounted for 40-50% of total iron. The results suggested that size-fractionated iron can transform into each other, especially the highly reactive colloidal iron. Significant linear correlations were found between iron in different size fractions, and significant correlations were also obtained between chlorophyll a and environmental factors, such as TN, TP and secchi depth. No significant correlation between iron and chlorophyll a was found in this study.
Franck-Condon simuation of photoelectron spentroscopy of HOO- and DOO-: including Duschinsky effects
Resumo:
VUV-UV and Eu-L-3 edge XANES spectra were measured for europium-doped strontium tetraborate prepared by solid state reaction at high temperature in air. The VUV-UV spectra show that the host absorption band of (SrBO7)-O-4 appears below 170 nm. The charge transfer band of Eu3+ doped in SrB4O7 is peaked at 272 nm. The 4f-5d transitions of Eu2+ consist of a band peaked at 310 nm with a shoulder at 280 nm and also include the bands peaked at 238 (weak) and 203 (strong) nm. The result of XANES spectrum at Eu-L3 edge of the synthesized sample indicates that Eu3+ and Eu2+ coexist in SrB4O7:Eu prepared in air, which is consistent with the results of the VUV-UV spectra.
Resumo:
Based on the data analysis, this study further explores the characteristics of East Asian winter monsoon (hereafter, EAWM, for brevity) as well as the related air-sea-land system, and illustrates how and to what degree anomalous signals of the subsequent Asian summer monsoon are rooted in the preceding EAWM activity. We identified an important air-sea coupled mode, i.e., the EAWM mode illustrated in Section 3. In cold seasons, strong EAWM-related air-sea two-way interaction is responsible for the development and persistence of the SSTA pattern of EAWM mode. As a consequence, the key regions, i.e., the western Pacific and South China Sea (hereafter, SCS, for brevity), are dominated by such an SSTA pattern from the winter to the following summer. In the strong EAWM years, the deficient snow cover dominates eastern Tibetan Plateau in winter, and in spring, this anomaly pattern is further strengthened and extended to the northwestern side of Tibetan Plateau. Thus, the combined effect of strong EAWM-related SSTA and Tibetan snow cover constitutes an important factor in modulating the Asian monsoon circulation. The active role of the EAWM activity as well as the related air-sea-land interaction would, in the subsequent seasons, lead to: 1) the enhancement of SCS monsoon and related stronger rainfall; 2) the northward displacement of subtropical high during Meiyu period and the related deficient rainfall over Meiyu rainband; 3) above-normal precipitation over the regions from northern Japan to northeastern China in summer; 4) more rainfall over the Arabian Sea and Northeast India, while less rainfall over southwest India and the Bay of Bengal. The strong EAWM-related air-sea interaction shows, to some degree, precursory signals to the following Asian summer monsoon. However, the mechanism for the variability of Indian summer monsoon subsequent to the strong EAWM years remains uncertain.
Resumo:
In this paper, the detailed morphology of Prorocentrum donghaiense Lu from both field samples and cultures was examined, and a taxonomic comparison was made between P donghaiense and some related Prorocentrum spp. using morphological and molecular data and other published information. There were distinct differences among these species in morphological characteristics that historically have been presented as conservative features. The discrepancies extended beyond that of individual variations within the same species due to environmental factors. Therefore, these morphological features may not be conservative but, rather, polymorphic depending on environmental conditions. Based on this analysis, we suggest that the high-biomass bloom-forming species in the East China Sea, previously reported as Prorocentrum dentatum Stein, is P donghaiense Lu. The species reported from the East China Sea and Japanese and Korean waters appear to be the same species. Molecular data also suggest that P. dentatum (CCMP1517) and P. donghaiense are genetically identical. Therefore, the geographic distribution of P. donghaiense may be much wider than expected. (C) 2004 Elsevier B.V. All rights reserved.