110 resultados para phenol
Resumo:
A solid catalyst manganese pyrophosphate based on non-sieves to oxidize benzene to phenol with oxidant hydrogen peroxide has shown good conversion with good selectivity in CH3CN at 65 degrees C investigating water contact angle data of three manganese salts, it is found manganese pyrophosphate has certain repulsive water character. It is further to be confirmed by benzene and phenol adsorption experiments onto catalyst surface by GC. With benzene/H2O2 ratio of 1, the benzene conversion of 13.8% with phenol selectivity of 85.0% was achieved. It is noteworthy that no any products are obtained using manganese pyrophosphate as catalyst in the oxidation of phenol in CH3CN solvent.
Resumo:
The functional polystyrene, (Cl-PS)(2)-CHCOOCH2CH2OH ( designated as XPSt and coded P2) was prepared by ATRP at 130(0)C using CuCl and bipyridine as catalysts, 2,2-dichloro acetate-ethylene glycol (DCAG) as multifunctional initiator and THF as solvent. 4-Nitoroaniline azomethine-4' phenol (P1) as chromophores were covalently linked to the functional end groups of the polymer by using simple displacement reaction. The functional polystyrenes, namely XPSt (P2) and (PS)(2)-CHCOOCH2CH2OH, designated as X-PSt and coded P3 and their post-derivatives, namely, DXPSt (P4) and DX-PSt (P5) respectively were characterized by IR, NMR and UV spectroscopies, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), polarising optical microscopy (POM) and XRD studies. DSC showed that incorporation of chromophores in the side chains of polymers towards the polystyrene moiety increases the rigidity of the polymer and subsequently, its glass transition temperature; however the incorporation of side chain towards the alcoholic functional group decreases the glass transition temperature. The post derivatives do not play any significant role to increase the thermal stability ( TGA).
Resumo:
Five variables for phenol derivatives were calculated by molecular projection in three-dimensional space which were combined with eight quantum-chemical parameters and three Am indices. These variables were selected by using leaps-and-bounds regression analysis. Multiple linear regression analysis and artificial neural networks' were performed, and the results obtained by using. artificial neural networks are superior than that obtained by using multiple linear regression.
Resumo:
The p-toluene sulfonic acid (MA) in phenol matrix was separated and determined by capillary electrophoresis with ultraviolet detector. the effect of the concentration and pH of the buffer on separation was investigated. Cinnamic acid has been chosen as the internal standard from four compounds, the calibration curves of PTSA in 50 mg/L phenol matrix were obtained with and without the internal standard. The linear range was from 1.25 to 12.5 mg/L and the correlation coefficient was 0.9999 for both curves. The limit of detection of PISA was 0.75 mg/L at 3 times of SIN. Finally, the concentration of PTSA in four synthesized samples was determined with method of standard additions, and the effect of matrix was discussed. The values of MA in these samples were 1.01, 0.94, 1.56 and 0.00 mg/L respectively.
Resumo:
It was found that at neutral pH the hydroxylation reaction rate of phenol was accelerated with an increase of the amounts of 1,4-quinone (1,4-BQ), This acceleration was ascribed to the formation of semiquinone from 1,4-BQ. The semiquinone and 1,4-BQ were suggested to play a role of actual oxidant (electron transfer) in the catalytic cycle. With further reaction, most 1,4-BQ was converted into 1,4-hydroquinone (HQ) and the corresponding mechanism was proposed.
Resumo:
Orthogonal descriptors is a viable method for variable selection, but this method strongly depend on the orthogonalisation ordering of the descriptors. In this paper, we compared the different methods used for order the descriptors. It showed that better results could be achieved with the use of backward elimination ordering. We predicted R-f value of phenol and aniline derivatives by this method, and compared it with classical algorithms such as forward selection, backward elimination, and stepwise procedure. Some interesting hints were obtained.
Resumo:
Hydrotalcite-like compounds (HTLcs): (CuMAlCO3)-Al-II-HTLcs, where M-II=Co2+, Ni2+, Cu2+, Zn2+ and Fe2+, were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs was studied in the phenol hydroxylation by H2O2 in liquid phase; then the effects of the ratio of Cu/Al, reaction temperature, solvent and pH of medium were investigated. It has been found that the uncalcined HTLcs have higher activities than those of calcined samples in this reaction. The catalyst CuAlCO3-HTLcs having Cu/Al=3 efficiently oxidized phenol and gave high yields of the corresponding diphenols in appropriate reaction conditions. A tentative reaction mechanism is also proposed. (C) 1998 Elsevier Science B.V.
Resumo:
Copper-Aluminium Hydrotalcite-like compounds are synthesized by coprecipitation and characterized with XRD and IR. Catalysis of the above mentioned HTLcs are investigated in the phenol hydroxylation, good results are obtained. Meanwhile, the effects of the ratio of Cu/Al, reaction temperature, reaction medium and pH of reaction system are discussed, The reaction mechanism is also proposed.
Resumo:
Hydrotalcite-like compounds containing carbonate ion as the interlayer anion were prepared by coprecipitation under low supersaturation condition by mixing an aqueous solution of metal nitrates with an aqueous solutions of NaOH and Na2CO3, at room temperature, maintaining pH = 8-10 with vigorous stirring, Following the mixing, the resulting heavy slurry was aged at 353 K for 18 h with vigorous stirring, The precipitate was then filtered, washed several times with hot distilled water and dried in air at 353 K overnight, In this way, CuMI AlCO3-HTLcs and M-I AlCO3-HTLcs were synthesized and characterized by means of XRD and IR, The catalysis of the above mentioned HTLcs were investigated in the phenol hydroxylation with H2O2. The results indicated that all of the copper-containing HTLcs had a higher catalytic activity in the reaction, However, those catalysts that did not contain copper had no catalytic activity in this reaction, This means that copper was the active center in the phenol hydroxylation. Meanwhile, the mechanism was also proposed, which could be used to explain the main reason for higher activity for CuCuAlCO3-HTLcs in the phenol hydroxylation and the effect of Mg2+, Zn2+, Co2+, Ni2+ on activity of CuMI AlCO3-HTLcs.
Resumo:
Mixed oxides Ln(2)CuO(4+/-lambda)(Ln = La, Pr, Nd, Sm, Gd) with K2NiF4 structure were prepared. Their crystal structures were studied with XRD and IR spectra. Meanwhile, the average valence of Cu ions and nonstoichiometric oxygen (lambda) were determined through chemical analyses. Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated. Results show that the catalysis of these mixed oxides has close relation with their structures and composition. Substitution of A site atom in Ln(2)CuO(4+/-lambda) has a great influence on their catalysis in the phenol hydroxylation.
Resumo:
Iron(II)-8-quinolino/MCM-41 is prepared. Its catalysis is studied in phenol hydroxylation using H2O2 (30%) as oxidant. The experiment shows that Iron(II)-8-quinolinol/MCM-41 has good catalytic activity and desired stability. Based on cyclic voltammetry, ESR, and UV-visible spectra studies of iron(II)-8-quinolinol complex in liquid phase, a radical substitution mechanism is proposed and used to demonstrate the experimental facts clearly. (C) 1997 Academic Press.
Resumo:
Iron phenanthroline - and 8 - hydroxyquinoline complexes /Y zeolite, denoted a FePhen/Y and FeOx/Y respectively, were prepared; The formation of the metal complexes mentioned above within the cages of Y zeolite and their crystal structures were determined by elemental analyses, diffuse reflectance UV-Vis,SEM,BET,and XRD methods; The influence of experimental parameters upon phenol conversion and product selectivities were investigated as well.