225 resultados para phase separation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiation induced phase separation in PTFE as shown by the observation of separation of its melting curves was investigated in this work. The observed phase separation was found to depend on irradiation temperature and explained as being duo to radiation induced increase in disorder of its crystalline region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic mechanical analysis and scanning electron microscopy were used to study phase separation of three blends of anhydride-cure bisphenol-A-type epoxy resin with phenolphthalein poly(ether ether ketone). Phase separation was observed for all the blends. The overall compatibility and the resulting morphology of the cured blends are dependent on the choice of cure agent. The phenomena have been discussed from the points of view of both thermodynamics and kinetics. The effects of the choice of hardener on phase separation are considered to be primarily due to differences between the chemical natures of the hardeners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic scaling and fractal behaviour of spinodal phase separation is studied in a binary polymer mixture of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). In the later stages of spinodal phase separation, a simple dynamic scaling law was found for the scattering function S(q,t):S(q,t) approximately q(m)-3S approximately (q/q(m)). The possibility of using fractal theory to describe the complex morphology of spinodal phase separation is discussed. In phase separation, morphology exhibits strong self-similarity. The two-dimensional image obtained by optical microscopy can be analysed within the framework of fractal concepts. The results give a fractal dimension of 1.64. This implies that the fractal structure may be the reason for the dynamic scaling behaviour of the structure function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermally induced phase separation in the mixture of poly (methyl methacrylate) (PMMA) with poly(styrene-co-acrylonitite (SAN) has intern studied with pulsed nuclear magnetic resonance(NMR) in single spin-lattice retaxation time T-1 of the eornpatibl. mixture two T-1 corresponding to those of PM MA-rich and SAN-rich comairis. Meanwhile, both T-1 gradually changing with annealing time provides the direct evidence that the phase separation takes place with a decomposition mechanism. Diffusion coeffieient was to lac negative, indicating an uphal diffusion characteristics, The basic parameters governing its kinetics were estimated using NMR date which were in good agreement with those evaluated from time-resolved light scattering experiments for a 60/40(PMMA/SAN) mixture annealed at 180.0 degrees C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oil/water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture k - epsilon model. Some experiments of oil/water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends oil the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular weight dependence of phase separation behavior of the Poly (ethylene oxide) (PEO)/Poly(ethylene oxide-block-dimethylsiloxane) (P(EO-b-DMS)) blends was investigated by both experimental and theoretical methods. The cloud point curves of PEO/P(EO-b-DMS) blends were obtained by turbidity method. Based on Sanchez-Lacombe lattice fluid theory (SLLFT), the adjustable parameter, epsilon*(12)/k (quantifying the interaction energy between different components), was evaluated by fitting the experimental data in phase diagrams. To calculate the spinodals, binodals, and the volume changes of mixing for these blends, three modified combining rules of the scaling parameters for the block copolymer were introduced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microphase separation of binary mixed A/B polymer brushes exposed to different solvents is studied using Single-Chain-in-Mean-Field simulations. Effects of solvent quality and selectivity, grafting density, composition, and chain-length asymmetry are systematically investigated, and diagrams of morphologies in various solvents are constructed as a function of grafting density and composition or chain-length asymmetry. The structure of the microphase segregated morphologies lacks long-range periodic order, and it is analyzed quantitatively Using Minkowski measures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, the film thickness (l(0)) effect on the phase and dewetting behaviors of the blend film of poly(methyl methacrylate)/poly (styrene-ran-acrylonitrile) (PMMA/SAN) has been studied by in situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The thinner film shows the more compatibility of the blend, and the phase separation of the film occurs at l(0) > 5R(g) (radius of gyration). An initially time-independent q*, the characteristic wavenumber of the phase image, which is in good agreement of Cahn's linearized theory for the early stage of spinodal decomposition, has been obtained in real space and discussed in detail. For 5R(g) > l(0) > 3R(g), a "pseudo-dewetting/(phase separation + wetting)" behavior occurs, where the pseudo-wetting is driven by the concentration fluctuation mechanism. For 10 < 3R(g), a "real dewetting/(phase separation + wetting)" behavior occurs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our previous investigation showed that the ordered hexagonal island pattern in the phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/P2VP) formed due to the convection effect by proper control of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to P2VP. In this paper, we further illustrate that, by adding a proper amount of the surfactant Triton X-100 to the PS/P2VP toluene solution, the ordered hexagonal island pattern can be transformed to the ordered honeycomb pattern. The effects of the amount of Triton X-100 on the surface morphology evolution and the pattern transformation are discussed in terms of the collapse of Triton X-100, phase separation between Triton X-100/P2VP and PS, the interfacial interaction between Triton X-100/P2VP and the mica substrate, and the Benard-Marangoni convection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of the molecular weight of polystyrene (PS) component on the phase separation of PS/poly(4-vinylpyridine) (PS/P4VP) blend films on homogeneous alkanethiol self-assembled monolayer (SAM) and heterogeneous SAM/Au substrates have been investigated by means of atomic force microscopy (AFM). For the PS (22.4k)/P4VP (60k) system, owing to the molecular weight of PS component is relatively small, the well-aligned PS and P4VP stripes with good thermal stability are directed by the patterned SAM/Au surfaces. With the increase of the molecular weight of PS component (for the PS (582k)/P4VP (60k) system), the diffusion of P4VP is hindered by the high viscosity of PS during the fast spin-coating process. The phase separation behavior of PS/P4VP on the SAM/Au patterned substrates is similar to that on the homoueneous SAM and cannot be easily directed by the patterned SAM surfaces even though the characteristic length of the lateral domain morphology is commensurate with the stripe width.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dynamics of dewetting and phase separation in ultrathin films (thickness is ca. one radius of gyration, approximate to 1 R-g) of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blends on Si substrate has been studied by in situ atomic force microscopy (AFM). In the miscible region, a "spinodal-like" dewetting driven by a composition fluctuation recently predicted by Wensink and Jerome (Langmuir 2002, 18, 413) occurs. In the two-phase region, the dewetting of the whole film is followed by phase separation in the droplets, coupling with the wetting of the substrate by the PMMA extracted by the strong attractive interaction between them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crystallization and phase behavior in solution-cast thin films of crystalline syndiotactic 1,2-polybutadiene (s-1,2-PB) and isotactic polypropylene (i-PP) blends have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) techniques. Thin films of pure s-1,2-PB consist of parallel lamellae with the c-axis perpendicular to the film plane and the lateral scale in micrometer size, while those of i-PP are composed of cross-hatched and single-crystal-like lamellae. For the blends, TEM and AFM observations show that with addition of i-PP, the s-1,2-PB long lamellae become bended and i-PP itself tends to form dispersed convex regions oil a continuous s-1,2-PB phase even when i-PP is the predominant component, which indicates a strong phase separation between the two polymers during film formation. FESEM micrographs of both lower and upper surfaces of the films reveal that the s-1,2-PB lamellae pass through i-PPconvex regions from the bottom, i.e. the dispersed i-PP regions lie on the continuous s-1,2-PB phase. The structural development is attributed to an interplay of crystallization and phase separation of the blends in the film forming process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.