21 resultados para perturbative methods
Resumo:
Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.
Resumo:
By generalization of the methods presented in Part I of the study [J. Opt. Soc. Am. A 12, 600 (1994)] to the four-dimensional (4D) Riemannian manifold case, the time-dependent behavior of light transmitting in a medium is investigated theoretically by the geodesic equation and curvature in a 4D manifold. In addition, the field equation is restudied, and the 4D conserved current of the optical fluid and its conservation equation are derived and applied to deduce the time-dependent general refractive index. On this basis the forces acting on the fluid are dynamically analyzed and the self-consistency analysis is given.
Resumo:
We compare the effectiveness of six exchange/correlation functional combinations (Becke/Lee, Yang and Parr; Becke-3/Lee, Yang and Parr; Becke/Perdew-Wang 91; Becke-3/Perdew-Wang 91; Becke/Perdew 86; Becke-3/Perdew 86) for computing C-N, O-O and N-NO2 dissociation energies and dipole moments of five compounds. The studied compounds are hexabydro-1,3,5-trinitro-1,3,5-triazine (RDX), dimethylnitramine, cyanogen, nitromethane and ozone. The Becke-3/Perdew 86 in conjunction with 6-31G
Resumo:
Pt-, Pd-, and Zr-doped SnO2 thin films and dopant-free VOx films were fabricated by planar magnetron sputtering. Tests for sensitivity to SO2 for all samples were conducted at 180 degreesC, and the sensitivities were investigated ex situ with photometric and ellipsometric methods at room temperature. It was found that the optical sensitivities as well as the sensitive wavelength region for SnO2 films could be tuned by doping. The Pd-doped SnO2 films had good sensitivity in the visible range, and the Zr-doped in the near IR. The dominant sensitive wavelength region for VOx films fell into the visible range, and the ratio of the sensitivity in the visible to that in the near IR increased with O-2/Ar in the depositing atmosphere. (C) 2001 society of Photo-Optical instrumentation Engineers .