74 resultados para optical modulation
Resumo:
We present a comprehensive study of the one-dimensional modulation instability of broad optical beams in biased photo refractive-photovoltaic crystals under steady-state conditions. We obtain the one-dimensional modulation instability growth rate by globally treating the space-charge field and by considering distinction between values of Eo in nonlocal effects and local effects in the space-charge field, where Eo is the field constant correlated with terms in the space-charge field, which depends on the external bias field, the bulk photovoltaic effect, and the ratio of the optical beam's intensity to that of the dark irradiance. The one-dimensional modulation instability growth rate in local effects can be determined from that in nonlocal effects. When the bulk photovoltaic effect is neglectable, irrespective of distinction between values of Eo in nonlocal effects and local effects in the space-charge field, the one-dimensional modulation instability growth rates in nonlocal effects and local effects are those of broad optical beams studied previously in biased photorefractive-nonphotovoltaic crystals. When the external bias field is absent, the one-dimensional modulation instability growth rates in nonlocal effects and local effects predict those of broad optical beams in open- and closed-circuit photorefractive-photovoltaic crystals. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.
Resumo:
In this paper, the gamma-gamma probability distribution is used to model turbulent channels. The bit error rate (BER) performance of free space optical (FSO) communication systems employing on-off keying (OOK) or subcarrier binary phase-shift keying (BPSK) modulation format is derived. A tip-tilt adaptive optics system is also incorporated with a FSO system using the above modulation formats. The tip-tilt compensation can alleviate effects of atmospheric turbulence and thereby improve the BER performance. The improvement is different for different turbulence strengths and modulation formats. In addition, the BER performance of communication systems employing subcarrier BPSK modulation is much better than that of compatible systems employing OOK modulation with or without tip-tilt compensation.
Resumo:
A theoretical investigation of the nonlinear copropagation of two optical pulses of different frequencies in a photonic crystal fiber is presented. Different phenomena are observed depending on whether the wavelength of the signal pulse is located in the normal or the anomalous dispersion region. In particular, it is found that the phenomenon of pulse trapping occurs when the signal wavelength is located in the normal dispersion region while the pump wavelength is located in the anomalous dispersion region. The signal pulse suffers cross-phase modulation by the Raman shifted soliton pulse and it is trapped and copropagates with the Raman soliton pulse along the fiber. As the input peak power of the pump pulse is increased, the red-shift of the Raman soliton is considerably enhanced with the simultaneous further blue-shift of the trapped pulse to satisfy the condition of group velocity matching.
Resumo:
We propose an asymmetric double AlGaAs/GaAs quantum well structure with a common continuum to generate a large cross-phase modulation (XPM). It is found, owing to resonant tunneling, that a large XPM can be achieved with vanishing linear and two-photon absorptions. (c) 2007 Optical Society of America.
Resumo:
A novel method to construct a quality map, called modulation-phase-gradient variance (MPGV), is proposed, based on modulation and the phase gradient. The MPGV map is successfully applied to two phase-unwrapping algorithms - the improved weighted least square and the quality-guided unwrapping algorithm. Both simulated and experimental data testify to the validity of our proposed quality map. Moreover, the unwrapped-phase results show that the new quality map can have higher reliability than the conventional phase-derivative variance quality map in helping to unwrap noisy, low-modulation, and/or discontinuous phase maps. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We propose a technique for dynamic full-range Fourier-domain optical coherence tomography by using sinusoidal phase-modulating interferometry, where both the full-range structural information and depth-resolved dynamic information are obtained. A novel frequency-domain filtering algorithm is proposed to reconstruct a time-dependent complex spectral interferogram from the sinusoidally phase-modulated interferogram detected with a high-rate CCD camera. By taking the amplitude and phase of the inverse Fourier transform of the complex spectral interferogram, a time-dependent full-range cross-sectional image and depth-resolved displacement are obtained. Displacement of a sinusoidally vibrating glass cover slip behind a fixed glass cover slip is measured with subwavelength sensitivity to demonstrate the depth-resolved dynamic imaging capability of our system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel scheme is proposed to transform a Gaussian pulse to a millimeter-wave frequency modulation pulse by using an apodized Moire fiber Bragg grating in radio-over-fiber system. The relation between the input and output pulses is analyzed theoretically by Fourier transformation method and the requirements for the proposed fiber grating are presented. An apodized Moire fiber Bragg grating is designed and its characteristics are studied. It is shown that the proposed device is feasible, and the new scheme is believed to be an effective solution for the generation of millimeter-wave sub-carrier in future radio-over-fiber systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel method to construct a quality map, called modulation-phase-gradient variance (MPGV), is proposed, based on modulation and the phase gradient. The MPGV map is successfully applied to two phase-unwrapping algorithms - the improved weighted least square and the quality-guided unwrapping algorithm. Both simulated and experimental data testify to the validity of our proposed quality map. Moreover, the unwrapped-phase results show that the new quality map can have higher reliability than the conventional phase-derivative variance quality map in helping to unwrap noisy, low-modulation, and/or discontinuous phase maps. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The electro-optic effect in uniaxial crystals for light propagating near the optic axis with any polarization has been analyzed. The passive and the electrically induced birefringences and the rotation of polarization direction in crystals have been calculated, and the conoscopic interference figures under orthogonal polariscopes for different polarizer directions have been plotted. The extinction areas caused by the rotation of polarization direction in crystals change with the polarizer direction, but the two heads of the induced optical axes do not vary, which are always on the induced principal axis with bigger refractive index. The directions of polariscopes are always extinction, and the +/- 45 degrees directions with polarizer are always complete transmission. The conoscopic interference figures for LiNbO3 crystals have been demonstrated experimentally by rotating polariscopes directions, which accord with the theoretically calculating plots. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
We present two novel 1XN dynamic optical couplers that are based on Dammann gratings to achieve dynamic optical coupled technology. One is presented by employing a specially designed Dammann grating that consists of the Dammann-grating area and the blank area. The other is developed by using two complementary even-numbered Dammann gratings. The couplers can achieve the function conversion between a beam splitter and a combiner according to the modulation of the gratings. We have experimentally demonstrated 1X8 dynamic optical couplers at the wavelength of 1550 nm. The experimental results and the analyses are reported in detail.
Resumo:
We demonstrate a full-range parallel Fourier-domain optical coherence tomography (FD-OCT) in which a tomogram free of mirror images as well as DC and autocorrelation terms is obtained in parallel. The phase and amplitude of two-dimensional spectral interferograms are accurately detected by using sinusoidal phase-modulating interferometry and a two-dimensional CCD camera, which allows for the reconstruction of two-dimensional complex spectral interferograms. By line-by-line inverse Fourier transformation of the two-dimensional complex spectral interferogram, a full-range parallel FD-OCT is realized. Tomographic images of two separated glass coverslips obtained with our method are presented as a proof-of-principle experiment.
Resumo:
We propose a technique for dynamic full-range Fourier-domain optical coherence tomography by using sinusoidal phase-modulating interferometry, where both the full-range structural information and depth-resolved dynamic information are obtained. A novel frequency-domain filtering algorithm is proposed to reconstruct a time-dependent complex spectral interferogram from the sinusoidally phase-modulated interferogram detected with a high-rate CCD camera. By taking the amplitude and phase of the inverse Fourier transform of the complex spectral interferogram, a time-dependent full-range cross-sectional image and depth-resolved displacement are obtained. Displacement of a sinusoidally vibrating glass cover slip behind a fixed glass cover slip is measured with subwavelength sensitivity to demonstrate the depth-resolved dynamic imaging capability of our system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Based on the optical characteristics of PLZT electro-optic ceramic, two kinds of electro-optic deflectors, triangular electrode structure and optical phased array technology, are studied in detail by using transverse electro-optic effect. Theoretically, the electro-optic deflection characteristics and mechanisms of the deflectors are analyzed. Experimentally, the optical characteristics of ceramic wafer, such as the phase modulation, the hysteresis and the electro-induced loss characteristics, are measured firstly, and then the beam deflection experiments are designed to verify the theoretical results. Moreover, the effect of temperature on the performance of triangular electrode deflector is investigated. The characteristics of both deflectors are also compared and illuminated. (c) 2007 Optical Society of America.