43 resultados para oceanic crust
Resumo:
Numerical simulations of freak wave generation are studied in random oceanic sea states described by JONSWAP spectrum. The evolution of initial random wave trains is numerically carried out within the framework of the modified four-order nonlinear Schroedinger equation (mNLSE), and some involved influence factors are also discussed. Results show that if the sideband instability is satisfied, a random wave train may evolve into a freak wave train, and simultaneously the setting of the Phillips parameter and enhancement coefficient of JONSWAP spectrum and initial random phases is very important for the formation of freak waves. The way to increase the generation efficiency of freak waves though changing the involved parameters is also presented.
Resumo:
Net organic metabolism (that is, the difference between primary production and respiration of organic matter) in the coastal ocean may be a significant term in the oceanic carbon budget. Historical change in the rate of this net metabolism determines the importance of the coastal ocean relative to anthropogenic perturbations of the global carbon cycle. Consideration of long-term rates of river loading of organic carbon, organic burial, chemical reactivity of land-derived organic matter, and rates of community metabolism in the coastal zone leads us to estimate that the coastal zone oxidizes about 7 × 1012 moles C/yr. The open ocean is apparently also a site of net organic oxidation (∼16 × 1012 moles C/yr). Thus organic metabolism in the ocean appears to be a source of CO2 release to the atmosphere rather than being a sink for atmospheric carbon dioxide. The small area of the coastal ocean accounts for about 30% of the net oceanic oxidation. Oxidation in the coastal zone (especially in bays and estuaries) takes on particular importance, because the input rate is likely to have been altered substantially by human activities on land.
Resumo:
Up to now, accurate determination of the growth age and hiatuses of the Co-rich crust is still a difficult work, which constrains the researches on the genesis, growth process, controlling factors, regional tectonics, paleo-oceanographic background, etc. of the Co-rich crust. This paper describes our work in determining the initial growth age of the Co-rich crust to be of the late Cretaceous Campanian Stage (about 75-80 Ma), by selecting the Co-rich crust with clear multi-layer structures in a central Pacific seamount for layer-by-layer sample analysis and using a number of chronological methods, such as Co flux dating, dating by correlation with Os-187/Os-188 evolution curves of seawater, and stratigraphic division by calcareous nannofossils. We have also discovered growth hiatuses with different time intervals in the early Paleocene, middle Eocene, late Eocene and early-middle Miocene, respectively. These results have provided an important age background for further researches on the Co-rich crust growth process and the paleo-oceanographic environment evolution thereby revealed in the said region.
Resumo:
The West Philippine basin (WPB) is a currently inactive marginal basin belonging to Philippine Sea plate, which has a complex formation history and various crust structures. Based on gravity, magnetic and seismic data, the tectonics in West Philippine basin is characterized by amagma spreading stage and strike slip fractures. NNE trending Okinawa-Luzon fracture zone is a large fracture zone with apparent geomorphology and shows a right-handed movement. The results of joint gravity-magnetic-seismic inversion suggest that the Okinawa-Luzon fracture zone has intensive deformation and is a transform fault. Western existence of the NW trending fractures under Ryukyu Islands Arc is the main cause of the differences between south and north Okinawa Trough. The Urdaneta plateau is not a remained arc, but remnant of mantle plume although its lava chemistry is similar to oceanic island basalt (OIB).
Resumo:
From systemic research of microstructure, geochemistry, uranium-series and Be-10 isotope dating on a new-type deepwater ferromanganese crust from the East Philippine Sea, the paleoenvironment evolution of the target area since the terminal Late Miocene was recovered. The vertical section changes of microstructure and chemical composition are consistent in the studied crust, which indicate three major accretion periods and corresponding paleoenvironment evolution of the crust. The bottom crust zone was formed in the terminal Late Miocene (5.6 Ma) with loose microstructure, high detritus content and high growth rate. Reductions of mineral element content, accretion rate and positive Ce-anomaly degree at 4.6 Ma indicate temporal warming, which went against the crust accretion and finally formed an accretion gap in the terminal Middle Pliocene (2.8-2.7 Ma). The more active Antarctic bottom seawaters in the Late Pliocene (2.7 Ma) facilitated the fast transfer to the top pure crust zone. Hereafter, with the further apart of volcanic source and the keeping increase of eolian material (1.0 Ma), although surrounding conditions were still favorable, mineral element content still shows an obvious reducing trend. It thereby offers new carrier and data for the unclear paleoceanographic research of the target area since the terminal Late Miocene.
Resumo:
Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea. The studied images show three nonlinear internal waves in a packet. A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images. Assuming that the ocean is a two-layer finite depth system, we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula. Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.
Resumo:
Carbon cycle is connected with the most important environmental issue of Global Change. As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ ocean iron experiments in order that the future research is more efficient.