26 resultados para numerical models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we studied the role of vertical component Of Surface tension of a water droplet on the deformation of membranes and microcantilevers (MCLs) widely used in lab-on-a-chip and micro-and nano-electromechanical system (MEMS/NEMS). Firstly, a membrane made of a rubber-like material, poly(dimethylsiloxane) (PDMS), was considered. The deformation was investigated using the Mooney-Rivlin (MR) model and the linear elastic constitutive relation, respectively. By comparison between the numerical solutions with two different models, we found that the simple linear elastic model is accurate enough to describe such kind of problem, which would be quite convenient for engineering applications. Furthermore, based on small-deflection beam theory, the effect of a liquid droplet on the deflection of a MCL was also studied. The free-end deflection of the MCL was investigated by considering different cases like a cylindrical droplet, a spherical droplet centered on the MCL and a spherical droplet arbitrarily positioned on the MCL. Numerical simulations demonstrated that the deflection might not be neglected, and showed good agreement with our theoretical analyses. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beam lattice-type models, such as the Euler-Bernoulli (or Timoshenko) beam lattice and the generalized beam (GB) lattice, have been proved very effective in simulating failure processes in concrete and rock due to its simplicity and easy implementation. However, these existing lattice models only take into account tensile failures, so it may be not applicable to simulation of failure behaviors under compressive states. The main aim in this paper is to incorporate Mohr-Coulomb failure criterion, which is widely used in many kinds of materials, into the GB lattice procedure. The improved GB lattice procedure has the capability of modeling both element failures and contact/separation of cracked elements. The numerical examples show its effectiveness in simulating compressive failures. Furthermore, the influences of lateral confinement, friction angle, stiffness of loading platen, inclusion of aggregates on failure processes are respectively analyzed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new structure of solution elements and conservation elements based on rectangular mesh was pro- posed and an improved space-time conservation element and solution element (CE/SE) scheme with sec- ond-order accuracy was constructed. Furthermore, the application of improved CE/SE scheme was extended to detonation simulation. Three models were used for chemical reaction in gaseous detonation. And a two-fluid model was used for two-phase (gas–droplet) detonation. Shock reflections were simu- lated by the improved CE/SE scheme and the numerical results were compared with those obtained by other different numerical schemes. Gaseous and gas–droplet planar detonations were simulated and the numerical results were carefully compared with the experimental data and theoretical results based on C–J theory. Mach reflection of a cellular detonation was also simulated, and the numerical cellular pat- terns were compared with experimental ones. Comparisons show that the improved CE/SE scheme is clear in physical concept, easy to be implemented and high accurate for above-mentioned problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched algorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method, a local hybrid particle level set method, three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges, explosive welding, cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy, wide application field and good compatibility. The numerical algorithms presented in this paper may be applied to the numerical research of explosion mechanics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using three analytical phonon models in quantum wells-the slab model, the guided-mode model, and the improved version of the Huang-Zhu model [Phys. Rev. B 38, 13 377 (1998)], -and the phonon modes in bulk, the energy-loss rates of hot carriers due to the Frohlich potential scattering in GaAs/AlAs multiple quantum wells (MQW's) are calculated and compared to those obtained based on a microscopic dipole superlattice model. In the study, a special emphasis is put on the effects of the phonon models on the hot-carrier relaxation process when taking the hot-phonon effect into account. Our numerical results show that, the calculated energy-loss rates based on the slab model and on the improved Huang-Zhu model are almost the same when ignoring the hot-phonon effect; however, with the hot phonon effect considered, the calculated cooling rate as well as the hot phonon occupation number do depend upon the phonon models to be adopted. Out of the four analytical phonon models investigated, the improved Huang-Zhu model gives the results most close to the microscopic calculation, while the guided-mode model presents the poorest results. For hot electrons with a sheet density around 10(12)/cm(2), the slab model has been found to overestimate the hot-phonon effect by more than 40% compared to the Huang-Zhu model, and about 75% compared to the microscopic calculation in which the phonon dispersion is fully included. Our calculation also indicates that Nash's improved version [J. Lumin. 44, 315 (1989)] is necessary for evaluating the energy-loss rates in quantum wells of wider well width, because Huang-Zhu's original analytical formulas an only approximately orthogonal for optical phonons associated with small in-plane wave numbers. [S0163-1829(99)08919-5].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical analysis was used to study the deposition and burning characteristics of combining co-combustion with slagging combustion technologies in this paper. The pyrolysis and burning kinetic models of different fuels were implanted into the WBSF-PCC2 (wall burning and slag flow in pulverized co-combustion) computation code, and then the slagging and co-combustion characteristicsespecially the wall burning mechanism of different solid fuels and their effects on the whole burning behavior in the cylindrical combustor at different mixing ratios under the condition of keeping the heat input samewere simulated numerically. The results showed that adding wood powder at 25% mass fraction can increase the temperature at the initial stage of combustion, which is helpful to utilize the front space of the combustor. Adding wood powder at a 25% mass fraction can increase the reaction rate at the initial combustion stage; also, the coal ignitability is improved, and the burnout efficiency is enhanced by about 5% of suspension and deposition particles, which is helpful for coal particles to burn entirely and for combustion devices to minimize their dimensions or sizes. The results also showed that adding wood powder at a proper ratio is helpful to keep the combustion stability, not only because of the enhancement for the burning characteristics, but also because the running slag layer structure can be changed more continuously, which is very important for avoiding the abnormal slag accumulation in the slagging combustor. The theoretic analysis in this paper proves that unification of co-combustion and slagging combustion technologies is feasible, though more comprehensive and rigorous research is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical adjoint model with TOPEX/POSEIDON (T/P) altimeter data was set up to investigate the shallow water tidal constituents in the Bohai Sea and the Yellow Sea. Shallow water tidal constituents W-4, MS4 and M-6) in the Bohai Sea and the Yellow Sea were first extracted from nearly 10 years of T/P data and then assimilated into a nonlinear barotropic tidal model by using adjoint method in order to fully describe the tides in this area. The general patterns of M-4 and MS4 solutions were in good agreement with those of Kang et al. (Cont. Shelf. Res. IS (1998) 739.) and Lefevre et al., (J. Geophys. Res. 105 (2000) 8707.). The RMS values for the principal constituents and coastal constituents were obviously less than those calculated by Kang et al. (1998) and Lefevre et al. (2000). It was shown that the calculated tidal constituents charts obtained in the present study were more accurate than those in other models. In the future the model will be applied to other coastal areas and some semi-enclosed seas. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Song and Banner (2002, henceforth referred to as SB02) used a numerical wave tank (developed by Drimer and Agnon, and further refined by Segre, henceforth referred to as DAS) to study the wave breaking in the deep water, and proposed a dimensionless breaking threshold that based on the behaviour of the wave energy modulation and focusing during the evolution of the wave group. In this paper, two modified DAS models are used to further test the SB02's results, the first one (referred to MDAS1) corrected many integral calculation errors appeared in the DAS code, and the second one (referred to MDAS2) replaced the linear boundary element approximation of DAS into the cubic element on the free surface. Researches show that the results of MDAS1 are the same with those of DAS for the simulations of deep water wave breaking, but, the different values of the wavemaker amplitude, the breaking time and the maximum local average energy growth rate delta(max) for the marginal breaking cases are founded by MDAS2 and MDAS1. However, MDAS2 still satisfies the SB02' s breaking threshold. Furthermore, MDAS1 is utilized to study the marginal breaking case in the intermediate water depth when wave passes over a submerged slope, where the slope is given by 1 : 500, 1 : 300, 1 : 150 or 1 : 100. It is found that the maximum local energy density U increases significantly if the slope becomes steeper, and the delta(max) decreases weakly and increases intensively for the marginal recurrence case and marginal breaking case respectively. SB02's breaking threshold is still valid for the wave passing over a submerged slope gentler than 1 : 100 in the intermediate water depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

River discharges are the important freshwater and nutrient sources for Bohai Sea (BS), and have a profound impact on the local marine environment. In this paper, the annual cycles of nutrient and phytoplankton dynamics in 1980s were reproduced using a coupled biogeochemical-physical model. Based on the validated simulations, the nutrient limitation characters were further investigated by running the model with the riverine nutrient altered, first enriching nitrogen and then phosphorus. It was found that although the riverine N:P ratios in Yellow and Haihe Rivers were much higher than the Redfield number, the nitrogen enrichment was still able to enhance the algae bloom in Laizhou and Bohai Bays. On the other hand, the response of algae growth to phosphorus enrichment was not thus obvious, which suggests that the local phytoplankton dynamics was characterized by the nitrogen limitation. Simulations also show that the nitrogen enrichment is generally accompanied by the phosphorus consumption, so a shift from nitrogen limitation to phosphorus limitation may occur if such a trend continues. (C) 2010 Elsevier Ltd. All rights reserved.