41 resultados para necking structures
Resumo:
In the present paper, a simple mechanical model is developed to predict the dynamic response of a cracked structure subjected to periodic excitation, which has been used to identify the physical mechanisms in leading the growth or arrest of cracking. The structure under consideration consists of a beam with a crack along the axis, and thus, the crack may open in Mode I and in the axial direction propagate when the beam vibrates. In this paper, the system is modeled as a cantilever beam lying on a partial elastic foundation, where the portion of the beam on the foundation represents the intact portion of the beam. Modal analysis is employed to obtain a closed form solution for the structural response. Crack propagation is studied by allowing the elastic foundation to shorten (mimicking crack growth) if a displacement criterion, based on the material toughness, is met. As the crack propagates, the structural model is updated using the new foundation length and the response continues. From this work, two mechanisms for crack arrest are identified. It is also shown that the crack propagation is strongly influenced by the transient response of the structure.
Resumo:
According to the experimental results, there exist large-scale coherent structures in the outer region of a turbulent boundary layer, which have been studied by many authors.As experimental results, Antonia (1990) showed the phase- aver aged streamlines and isovorticity lines of the large-scale coherent structures in a turbulent boundary layer for different Reynolds numbers. Based on the hydrodynamic stability theory, the 2-D theoretical model for the large-scale structures was proposed by Luo and Zhou, in which the eddy viscosity was defined as a complex function of the position in the normal direction. The theoretical results showed in ref. were in agreement with those in ref. However, there were two problems in the results. One is that in the experimental results, there were divergent focuses between two saddle points in the streamlines, but in the theoretical results, there were centers. The other is that the stretched parts of the isovorticity lines appear at the location of centers in the theoretical results, while in the experimental results they located somewhere between the focuses and saddle points. The reason is that the computations were based on a 2-D model.
Resumo:
An optimal theory on how database analysis to capture the flow structures has been developed in this paper, which include the POD method as its special case. By means of the remainder minimization method in the Sobolev space, for more general optimal conditions the new theory has the potential to overcome an inherent limitation of the POD method, i.e., it cannot be used to the situations in which the optimal condition is other than the inner product global one. As an example, using the new theory, the database of a two-dimensional flow over a backward-facing step is analyzed in detail, with velocity and vorticity bases.
Resumo:
The concept of ''Saturation Impulse'' for rigid, perfectly plastic structures with finite-deflections subjected to dynamic loading was put forward by Zhao, Yu and Fang (1994a). This paper extends the concept of Saturation Impulse to the analysis of structures such as simply supported circular plates, simply supported and fully clamped square plates, and cylindrical shells subjected to rectangular pressure pulses in the medium load range. Both upper and lower bounds of nondimensional saturation impulses are presented.
Resumo:
In this paper the symmetries of coupled map lattices (CMLs) and their attractors are investigated by group and dynamical system theory, as well as numerical simulation, by means of which the kink-antikink patterns of CMLs in space-amplitude plots are discussed.
Resumo:
Our recent progress in numerical studies of bluff body flow structures and a new method for the numerical analysis of near wake flow field for high Reynolds number flow are introduced. The paper consists of three parts. In part one, the evolution of wake vortex structure and variation of forces on a flat plate in harmonic oscillatory flows and in in-line steady-harmonic combined flows are presented by an improved discrete vortex method, as the Keulegan-Carpenter number (KC) varies from 2 to 40 and ratios of U-m to U-0 are of O(10(-1)), O(10) and O(10), respectively. In part 2, a domain decomposition hybrid method, combining the finite-difference and vortex methods for numerical simulation of unsteady viscous separated flow around a bluff body, is introduced. By the new method, some high resolution numerical visualization on near wake evolution behind a circular cylinder at Re = 10(2), 10(3) and 3 x 10(3) are shown. In part 3, the mechanism and the dynamic process for the three-dimensional evolution of the Karman vortex and vortex filaments in braid regions as well as the early features of turbulent structure in the wake behind a circular cylinder are presented numerically by the vortex dynamics method.
Resumo:
In this paper particular investigation is directed towards the combined effects of horizontal and vertical motions of real earthquakes to structures resting on sliding base. A simplified method is presented to treat the nonlinear effects of time dependent frictional force of the sliding base as a function of the vertical reaction produced by the foundation. As an example, the El Centro 1940 earthquake record is used on a structural model to show the structural responses due to a sliding base with different frictional and stiffness characteristics. The study shows that vertical ground motion does affect both the superstructure response and the base sliding displacement. Nevertheless, the sliding base isolator is shown to be effective for the reduction of seismic response of a superstructure.
Resumo:
Similar results may apply to the large-scale configuration of the stellar field.
Resumo:
In this paper the Deflagration to Detonation Transition (DDT) process of gaseous H-2-O-2 mixture and Mach reflection of gaseous detonation wave on a wedge have been conducted experimentally. The cellular pattern of DDT process and Mach reflection were obtained from experiments with wedge angle theta = 10(0) similar to 40(0) and initial pressure of gaseous mixture 16kPa similar to 26.7kPa. The 2-D numerical simulations of DDT process and Mach reflection of detonation wave were performed by using the simplified ZND model and improved space-time conservation element and solution element (CE/SE) method. The numerical cellular structures were compared with the cellular patterns of soot track. Compared results were shown that it is satisfactory. The characteristic comparisons on Mach reflection of air shock wave and detonation wave were carried also out and their differences were given.
Resumo:
In the absence of external loading, surface tension will induce a residual stress field in the bulk of nano structures. However, in the prediction of mechanical properties of nano structures, the elastic response of the bulk is usually described by classical Hooke’s law, in which the aforementioned residual stress was neglected in the existing literatures. The present paper investigates the influences of surface tension and the residual stress in the bulk induced by the surface tension on the elastic properties of nano structures. We firstly present the surface elasticity in the Lagrangian and the Eulerian descriptions and point out that even in the case of infinitesimal deformations the reference and the current configurations should be discriminated; otherwise the out-plane terms of surface displacement gradient, associated with the surface tension, may sometimes be overlooked in the Eulerian descriptions, particularly for curved and rotated surfaces. Then, the residual stress in the bulk is studied through the non-classical boundary conditions and used to construct the linear elastic constitutive relations for the bulk material. Finally, these relations are adopted to analyze the size-dependent properties of pure bending of Al nanowires. The present results show that surface tension will considerably affect the effective Young’s modulus of Al nanowires, which decrease with either the decrease of nanowires thickness or the increase of the aspect ratio.
Resumo:
Newfound attention has been given to solute transport in nanochannels. Because the electric double layer (EDL) thickness is comparable to characteristic channel dimensions, nanochannels have been used to separate ionic species with a constant charge-to-size ratio (i.e., electrophoretic mobility) that otherwise cannot be separated in electroosmotic or pressure- driven flow along microchannels. In nanochannels, the electrical fields within the EDL cause transverse ion distributions and thus yield charge-dependent mean ion speeds in the flow. Surface roughness is usually inevitable during microfabrication of microchannels or nanochannels. Surface roughness is usually inevitable during the fabrication of nanochannels. In the present study, we develop a numerical model to investigate the transport of charged solutes in nanochannels with hundreds of roughness-like structures. The model is based on continuum theory that couples Navier-Stokes equations for flows, Poisson-Boltzmann equation for electrical fields, and Nernst-Planck equation for solute transports. Different operating conditions are considered and the solute transport patterns in rough channels are compared with those in smooth channels. Results indicate that solutes move slower in rough nanochannels than in smooth ones for both pressure- driven and electroosmotic flows. Moreover, solute separation can be significantly improved by surface roughness under certain circumstances.
Resumo:
A dynamic model for the ice-induced vibration (IIV) of structures is developed in the present study. Ice properties have been taken into account, such as the discrete failure, the dependence of the crushing strength on the ice velocity, and the randomness of ice failure. The most important prediction of the model is to capture the resonant frequency lock-in, which is analog to that in the vortex-induced vibration. Based on the model, the mechanism of resonant IIV is discussed. It is found that the dependence of the ice crushing strength on the ice velocity plays an important role in the resonant frequency lock-in of IIV. In addition, an intermittent stochastic resonant vibration is simulated from the model. These predictions are supported by the laboratory and field observations reported. The present model is more productive than the previous models of IIV.
Resumo:
More and more piezoelectric materials and structures have been used for structure control in aviation and aerospace industry. More efficient and convenient computation method for large complex structure with piezoelectric actuation devices is required. A load simulation method of piezoelectric actuation is presented in this paper. By this method, the freedom degree of finite element simulation is significantly reduced, the difficulty in defining in-plane voltage for multi-layers piezoelectric composite is overcome and the transfer computation between material main direction and the element main direction is simplified. The concept of simulation load is comprehensible and suitable for engineers of structure strength in shape and vibration control, thereby is valuable for promoting the application of piezoelectric material and structures in practical aviation and aerospace fields.