29 resultados para natural-killer-cells
Resumo:
Like other transgenic animals, transgenic fishes produced by microinjection are transgenic mosaics. In order to produce homogenous transgenic fish, the transgenic blastula or gastrula cells were dissociated from Carassius auratus, Pengze var, and Cyprinus carpio, Huanghe var., and the nuclei were transferred into the mature eggs of the same species via microinjection or electro-fusion. Five nuclear-transferred Carassius auratus, Pengze var. and one Cyprinus carpio, Huanghe var. were obtained and the existence of the transgene was detected. The possibility of generating homogenous strain of transgenic fish by nuclear transplantation with transgenic early-embryonic cells is discussed.
Resumo:
The efficiencies of InxGa1-xN two-junction solar cells are calculated with various bandgap combinations of subcells under AM1.5 global, AM1.5 direct and AM0 spectra. The influence of top-cell thickness on efficiency has been studied and the performance of InxGa1-xN cells for the maximum light concentration of various spectra has been evaluated. Under one-sun irradiance, the optimum efficiency is 35.1% for the AM1.5 global spectrum, with a bandgap combination of top/bottom cells as 1.74 eV/1.15 eV. And the limiting efficiency is 40.9% for the highest light concentration of the AM1.5 global spectrum, with the top/bottom cell bandgap as 1.72 eV/1.12 eV.
Resumo:
Hybrid bulk heterojunction solar cells based on blend of poly(3-hexylthiophene) (P3HT) and TiO2 nanotubes or dye(N719) modified TiO2 nanotubes were processed from solution and characterized to research the nature of organic/inorganic hybrid materials. Compared with the pristine polymer P3HT and TiO2 nanoparticles/P3HT solar cells, the TiO2 nanotubes/P3HT hybrid solar cells show obvious performance improvement, due to the formation of the bulk heterojunction and charge transport improvement. A further improvement in the device performance can be achieved by modifying TiO2 nanotube surface with a standard dye N719 which can play a role in the improvement of both the light absorption and charge dissociation. Compared with the non-modified TiO2 nanotubes solar cells, the modified ones have better power conversion efficiency under 100 mW/cm(2) illumination with 500W Xenon lamp. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS quantum dots about 3-6 nm in diameter were synthesized with a novel method. Unlike the synthesis of oleic acid capped PbS quantum dots, the reactions were carried out in solution at room temperature, with the presence of a capping ligand species, MDMO-PPV. The quantum dots were used to fabricate bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT: PSS)/MDMO-PPV: PbS/Al structure. Current density-voltage characterization of the devices showed that after the addition of the MDMO-PPV capped PbS quantum dots to MDMO-PPV film, the performance was dramatically improved compared with pristine MDMO-PPV solar cells. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tin mono-sulphide (SnS) nanoparticles were synthesized by a facile method. Reactions producing narrow size distribution SnS nanoparticles with the diameter of 5.0-10 nm were carried out in an ethylene glycol solution at 150 degrees C for 24 h. Bulk heterojunction solar cells with the structure of indium tin oxide (ITO)/polyethylenedioxythiophene polystyrenesulphonate (PEDOT PSS)/SnS polymer/Al were fabricated by blending the nanoparticles with a conjugated polymer to form the active layer for the first time. Current density-voltage characterization of the devices showed that due to the addition of SnS nanoparticles to the polymer film, the device performance can be dramatically improved, compared with that of the pristine polymer solar cells. (c) 2009 Published by Elsevier B.V.
Resumo:
Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS nanorods about 100 nm in diameter and 400 nm in length were synthesized via a hydrothermal route in toluene and dimethylsulfoxide solution. By blending the PbS nanorods with the MDMO-PPV as the active layer, bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT PSS)/MDMO-PPV PbS nanorods/Al structure were fabricated in a N-2 filled glove box, Current density-voltage characterization of the devices showed that the solar cells with PbS nanorods hybrid with MDMO-PPV as active layer were better in performance than the devices with the polymer only. (C) 2009 Elsevier B.V. All rights reserved.
Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells
Resumo:
Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and metal materials, the excitation of surface-plasmon polaritons leads to obvious absorption enhancements in a wide near-IR range for different ridge shapes and periods. The highest enhancement factor of the cell external quantum efficiency is estimated to be 3.32. The optimized structure can achieve an increase of 17.12% in the cell efficiency. (C) 2009 Optical Society of America
Resumo:
SnS/SnO heterojunction structured nanocrystals with zigzag rod-like connected morphology were prepared by using a simple two-step method. Bulk heterojunction solar cells were fabricated using the SnS/SnO nanocrystals blended with poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV) as the active layer. Compared with solar cells using SnS nanoparticles hybridized with MDMO-PPV as the active layer, the SnS/SnO devices showed better performance, with a power conversion efficiency higher by about one order in magnitude.
Resumo:
In this paper, bulk heterojunction photovoltaic devices based on the poly[2-methoxy-5-(3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV):Bi2S3 nanorods hybrid material were present. To optimize the performance of the devices, the interface modification of the hybrid material that has a significant impact on the exciton dissociation efficiency was studied. An improvement in the device performance was achieved by modifying the Bi2S3 surface with a thin dye layer. Moreover, modifying the Bi2S3 surface with anthracene-9-carboxylic acid can enhance the performance further. Compared with the solar cells with Bi2S3 nanorods hybrid with the MDMO-PPV as the active layer, the anthracene-9carboxylic acid modified devices are better in performance, with the power conversion efficiency higher by about one order in magnitude.
Resumo:
High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.
Resumo:
Absence of gravity or microgravity influences the cellular functions of bone forming osteoblasts. The underlying mechanism, however, of cellular sensing and responding to the gravity vector is poorly understood. This work quantified the impact of vector-directional gravity on the biological responses of Ros 17/2.8 cells grown on upward-, downward- or edge-on-oriented substrates. Cell morphology and nuclear translocation, cell proliferation and the cell cycle, and cytoskeletal reorganization were found to vary significantly in the three orientations. All of the responses were duration-dependent. These results provide a new insight into understanding how osteoblasts respond to static vector-directional gravity.
Resumo:
The study is to investigate the feasibility and advantages of heavy ion beams on radiotherapy. The cellular cycle and apoptosis, cell reproductive death and p53 expression evaluated with flow cytometry, clonogenic survival assays and Western blot analysis were examined in lung carcinoma cells after exposure to 89.63 MeV/u carbon ion and 6 MV X-ray irradiations, respectively. The results showed that the number colonyforming assay of A549 was higher than that of H1299 cells in two radiation groups; A549 cellular cycle was arrested in G(2)/M in 12 It and the percentage of apoptosis ascended at each time point of carbon ion radiation with doses, the expression of p53 upregulated with doses exposed to X-ray or carbon ion. The cell number in G(2)/M of H1299 and apoptosis were increasing at all time points with doses in C-12(6+) ion irradiation group. The results suggested that the effects of carbon ions or X rays irradiation on lung carcinoma cells were different, C-12(6+) ion irradiation could have more effect on upregulating the expression of p53 than X-ray, and the upregulated expression of p53 might produce the cellular cycle G(2)/M arrested, apoptosis increasing; and p53 gene might affect the lung cancer cells radiosensitivity.
Resumo:
Objective To investigate whether the irradiation with C-beam could enhance adenovirus-mediated transfer and expression of p53 in human hepatocellular carcinoma. Materials and methods HepG2 cells were exposed to C-beam or gamma-ray and then infected with replicationdeficient adenovirus recombinant vectors containing human wild-type p53 or green fluorescent protein, respectively. The transfer efficiency and expression level of the exogenous gene were detected by flow cytometric analysis. Cell survival fraction was detected by clonogenic assay. Results The transfer frequency in C-beam or gamma-irradiated groups increased by 50-83% and 5.7-38.0% compared with the control, respectively (P < 0.05). Compared with C-beam alone, p53 alone, and gamma-ray with p53, the percentages of p53 positive cells for 1 Gy C-beam with p53 increased by 56.0-72.0%, 63.5-82.0%, and 31.3-72.5% on first and third day after the treatments, respectively (P < 0.05). The survival fractions for the 2Gy C-bearn and AdCMV-p53 infection groups decreased to similar to 2%. Conclusion C-beam irradiation could significantly promote AdCMV-green fluorescent protein transfer and expression of p53.
Resumo:
Emodin, a natural anthraquinone compound isolated from the rhizome of rhubarb, is reported to suppress the growth of tumor in many clinical situations. In this study, we focused on the effect of emodin in human breast cancer BCap-37 cells and further understand the underlying molecular mechanism in treating breast cancer. Using MTT assay and flow cytometry, we demonstrated the critical role of emodin in the suppression of the proliferation of BCap-37 cells based on a concentration- and time-dependent manner. The increase of apoptotic rate was also observed after incubation of BCap-37 cells on emodin at 20 mu M and 50 mu M for 48 h. The cells exhibited typical apoptotic features including cellular morphological change, chromatin condensation and membrane blebbing. The results of the study further showed that Bcl-2 level decreased, while Bax and cytosolic cytochrome c levels in sample cells increased after the emodin treatment by using Western blot. The decline in the Bcl-2/Bax ratio and the increase of cytosolic cytochrome c concentration were consistent with the increase of the apoptotic ratio. The results strongly suggest that the disruption of the mitochondrial signaling pathway was involved in emodin-induced apoptosis in BCap-37 cells.