18 resultados para model reference adaptive control systems
Resumo:
本文为动力学控制工业机器人机械手提出一种综合控制算法。该控制算法,利用小脑模型算术计算机模块模拟机器人机械手的动力学方程并计算实现期望运动所需力矩作为前馈力矩控制项;利用自适应控制器实现反馈控制,以消除由输入扰动和参数变化而引起的机器人机械手运动误差。这种控制方法在时间上是有效的,且很适合于定点实现。控制方法的有效性通过四自由度的直接驱动机器人前两个关节的计算机仿真实验得到验证。
Resumo:
本文提出了一种新的、有效的机器人自适应控制方式,克服了其他方法由于模型不准或计算量大等所带来的一系列问题。本文首先将 Lagrange 运动方程转化为 ARMA 模型,并用虚拟噪声补偿模型误差(即由于线性化、解耦、观测不准和干扰等误差).然后利用改进的 Kalman 自适应滤波算法在线进行参数辨识和状态估计,将获得的参数用于机器人控制系统自适应控制器的设计.最后给出了该算法的仿真结果并对此进行了讨论。
Resumo:
本文阐述了离散时间点过程理论,时变马尔科夫链及鞅差分序列在城市交通车队状态观测器中的应用。并在此基础上,改进了[5]中的估计算法。用本文提出的非线性最小方差估计算法,对提供的交通状态进行估计,所得结果比[5]中算法精度有明显提高。在大连市某交通干线计算机控制系统中初步应用,取得了令人满意的结果。