156 resultados para micro-pillar


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the finite element method was used to simulate micro-scale indentation process. The several standard indenters were simulated with 3D finite element model. The emphasis of this paper was the differences between 2D axisymmetric cone model and

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel self-assembled dual-layer film as apotential excellent lubricant for micromachines was successfully prepared on single-crystal silicon substrate by chemical adsorption of stearic acid (STA) molecules on self-assembled monolayer of 3-aminopropyltri

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation and nanoscratch tests were performed for titanium nitride (TiN) coatings on different tool steel substrates to investigate the indentation/scratch induced deformation behavior of the coatings and the adhesion of the coating–substrate interfaces and their tribological property. In this work, TiN coatings with a thickness of about 500 nm were grown on GT35, 9Cr18 and 40CrNiMo steels using vacuum magnetic-filtering arc plasma deposition. In the nanoindentation tests, the hardness and modulus curves for TiN/GT35 reduced the slowest around the film thickness 500 nm with the increase of indentation depth, followed by TiN/9Cr18 and TiN/40CrNiMo. Improving adhesion properties of coating and substrate can decrease the differences of internal stress field. The scratch tests showed that the scratch response was controlled by plastic deformation in the substrate. The substrate plays an important role in determining the mechanical properties and wear resistance of such coatings. TiN/GT35 exhibited the best load-carrying capacity and scratch/wear resistance. As a consequence, GT35 is the best substrate for TiN coatings of the substrate materials tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

了解微尺度气体流动特点是微机电系统设计和优化的基础.有关的研究可以上溯到20世纪初Knudsen的平面槽道流动质量流量的测量和Millikan的小球阻力系数的测量,实验结果揭示了稀薄气体效应即尺度效应对气体运动的重要影响.由于流动特征长度很小,微尺度气流经常处于滑流区甚至过渡领域,流动的相似参数为Knudsen数和Mach数.因此可以考虑利用相似准则,通过增大几何尺寸、减小压力的途径,解决微机电系统实验观测遇到的困难.为解决直接模拟MonteCarlo方法分析微机电系统中低速稀薄气流遇到的统计涨落困难,我们提出了信息保存法(IP),该方法能够有效克服统计散布,并已成功用于多种微尺度气流.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用一种非接触的光学方法傅立叶变换莫尔法(Fourier transform method),结合数字图像处理技术,对微幅振荡的水表面波的振幅进行测量.它是对全场中每一个像素点进行测量,比接触测量法具有更高的灵敏度.它为微幅水表面波振幅的测量提供了一种手段.通过将计算机生成的周期性光栅图像经投影机直接投影到被测物体的参考平面,经CCD摄像头、图像板捕捉存储形成数字化的光栅图像,利用傅立叶变换莫尔法处理光栅图像,从而获得包含有水表面波的振幅的相位信息,再经适当的几何变换获得振幅信息.我们在垂直振荡装置上进行了不同激励频率和不同振幅的表面波的振幅测量.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

利用自行研制的含热传导、冲击动力学大、变形有限元程序,模拟了小尺寸梁在脉冲激光加热条件下的变形过程。在此基础上,利用商用程序模拟了冷却及残余应力的产生,研究了激光参数(强度及分布)等对于微弯曲的影响。数值模拟结果与文献中的实验观察相吻合。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

英文摘要: The gas flow characteristics for various shapes of micro diffuser/nozzles have been experimentally investigated. The micro diffuser/nozzles with the lengths of 70 mu m, 90 mu m, 125 mu m and the taper angles of 7 degrees, 10 degrees, 14 degrees are designed and fabricated based on silicon micromachining technology for optimizing and comparing. The flat-wall diffuser/nozzle is 40 mu m x 5 mu m in depth and width. An experimental setup is designed to measure the gas flow rates under controlled temperature and pressure condition. Optimized values for the taper angle and the length of the diffuser/nozzle are experimentally obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present research, the discrete dislocation theory is used to analyze the size effect phenomena for the MEMS devices undergoing micro-bending load. A consistent result with the experimental one in literature is obtained. In order to check the effectiveness to use the discrete dislocation theory in predicting the size effect, both the basic version theory and the updated one are adopted simultaneously. The normalized stress-strain relations of the material are obtained for different plate thickness or for different obstacle density. The prediction results are compared with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. At the same time, at micron or sub-micron scale, another effect, which is referred to as the geometrical size effects such as crystal grain size effect, thin film thickness effect, etc., also influences the measured material hardness. However, the trends are at odds with the size-independence implied by the conventional elastic-plastic theory. In the present research, the strain gradient plasticity theory (Fleck and Hutchinson) is used to model the composition effects (size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting. The phenomena of the "pile-up" and "sink-in" appeared in the indentation test for the polycrystal materials are also discussed. Meanwhile, the micro-indentation experiments for the polycrystal Al and for the Ti/Si_3N_4 thin film/substrate system are carried out. By comparing the theoretical predictions with experimental measurements, the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-Chip as micro-assays for the determination of protein interaction, the analysis, the identification and the purification of proteins has large potential applications. The Optical Protein-Chip is able to detect the multi-interaction of proteins and multi-bio-activities of molecules directly and simultaneously with no labeling. The chip is a small matrix on solid substrate containing multi-micro-area prepared by microfabrication with photolithography or soft lithography for surface patterning, and processed with surface modification which includes the physical, chemical, and bio-chemical modifications, etc. The ligand immobilization, such as protein immobilization, especially the oriented immobilization with low steric hindrance and high bio-specific binding activity between ligand and receptor is used to form a sensing surface. Each area of the pattern is corresponding to only one bioactivity. The interval between the areas is non-bioactive and optically extinctive. The affinity between proteins is used to realize non-labeling microassays for the determination of protein identification and protein interaction. The sampling of the chip is non-disturbing, performed with imaging ellipsometry and image processing on a database of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface adhesion strength (or interface toughness) of a thin film/substrate system is often assessed by the micro-scratch test. For a brittle film material, the interface adhesion strength is easily obtained through measuring the scratch driving forces. However, to measure the interface adhesion strength (or interface toughness) for a metal thin film material (the ductile material) by the microscratch test is very difficult, because intense plastic deformation is involved and the problem is a three-dimensional elastic-plastic one. In the present research, using a double-cohesive zone model, the failure characteristics of the thin film/substrate system can be described and further simulated. For a steady-state scratching process, a three-dimensional elastic-plastic finite element method based on the double cohesive zone model is developed and adopted, and the steady-state fracture work of the total system is calculated. The parameter relations between the horizontal driving forces (or energy release rate of the scratching process) and the separation strength of thin film/substrate interface, and the material shear strength, as well as the material parameters are developed. Furthermore, a scratch experiment for the Al/Si film/substrate system is carried out and the failure mechanisms are explored. Finally, the prediction results are applied to a scratch experiment for the Pt/NiO material system given in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. In simulating the low speed flows in long micro-channels the DSMC method encounters the problem of large sample size demand and the difficulty of regulating boundary conditions at the inlet and outlet. Some important computational issues in the calculation of long micro-channel flows by using the IP method, such as the use the conservative form of the mass conservation equation to guarantee the adjustment of the inlet and outlet boundary conditions and the super-relaxation scheme to accelerate the convergence process, are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP method agree well with experimental data measured in long micro-channels by Pong et al. (with a height to length ratio of 1.2:3000), Shih et al. (l.2:4800), Arkilic et al. and Arkilic (l.3:7500), respectively. The famous Knudsen minimum of normalized mass flux is observed in IP and DSMC calculations of a short micro-channel over the entire flow regime from continuum to free molecular, whereas the slip Navier-Stokes solution fails to predict it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid method of continuum and particle dynamics is developed for micro- and nano-fluidics, where fluids are described by a molecular dynamics (MD) in one domain and by the Navier-Stokes (NS) equations in another domain. In order to ensure the continuity of momentum flux, the continuum and molecular dynamics in the overlap domain are coupled through a constrained particle dynamics. The constrained particle dynamics is constructed with a virtual damping force and a virtual added mass force. The sudden-start Couette flows with either non-slip or slip boundary condition are used to test the hybrid method. It is shown that the results obtained are quantitatively in agreement with the analytical solutions under the non-slip boundary conditions and the full MD simulations under the slip boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental research, the compressive stress-strain curves and the hardness depth curves are measured. In the theoretical simulation, based on the material microstructure characteristics and the experimental features of the compression and indentation, the microstructure cell models are developed and the strain gradient plasticity theory is adopted. The material compressive stress-strain curves and the hardness depth curves-are predicted and simulated. Through comparison of the experimental results with the simulation results, the material and model parameters are determined.