50 resultados para medium-range order
Resumo:
本文利用美国国家环境预测中心和国家大气研究中心(NCEP/NCAR—National Centers for Environmental Prediction/National Center for Atmospheric Research)的位势高度、气温、风速等大气资料、欧洲中期天气预报中心 (ECMWF—European Centre for Medium-Range Weather Forecasts—ERA-40)的雪深资料、美国国家海洋大气管理局(NOAA—National Oceanic and Atmospheric Administration)的海表温度(SST)资料、美国Scripps海洋研究所的上层海洋热含量资料等,采取相关分析、合成分析、经验正交函数分析、小波分析和小波交叉谱分析等统计分析方法,系统深入地讨论了西太平洋—印度洋—青藏高原气候系统在南海夏季风爆发过程中的作用。得到的主要结论如下: 1. 西太平洋和印度洋在南海夏季风爆发过程中起着关键作用 利用1951-1998年多种大气海洋资料,分析研究结果表明,西太平洋(暖池热含量)、印度洋(纬向风)在南海夏季风爆发中起关键的调控作用:以1970年为界,1970年之前,印度洋起主要作用,1970年之后西太平洋起主要作用,这主要是1970前后北极涛动有明显跃变的原因,这种跃变决定了印度洋在南海夏季风爆发中是否起决定作用(西风异常或东风异常),进而,决定了有利于或不利于南海夏季风的爆发。 1970年之前,北极涛动指数为负值,海陆温差(海上气温减大陆气温)是负值,大陆气温偏高,印度洋气温相对偏低,印度洋出现西风异常,有利于南海夏季风早爆发。在此期间,与印度洋SST密切相关的南印度洋偶极子的变化也与南海夏季风的爆发紧密相联。当南印度洋为正偶极子(西南印度洋SST为正异常,印度洋其他区域的SST为负异常)时,北印度洋为西风异常,南海夏季风爆发偏早;南印度洋为负偶极子(西南印度洋SST为负异常,印度洋其他地区的SST为正异常)时,北印度洋为东风异常,南海夏季风爆发偏晚。 1970年之后,北极涛动指数为正值,海陆气温差为正值,印度洋的状态不利于南海季风爆发;在这种情况下,西太平洋暖池的热含量则成为控制南海夏季风爆发的主要原因:暖池变暖的年份,即 La Niña 年,南海夏季风爆发早(强),反之,当暖池变冷的年份,即El Niño年,南海季风爆发晚(弱),即,南海夏季风爆发的早(强)晚(弱)与ENSO事件密切相关。 2.青藏高原春季积雪对南海夏季风爆发有重要的影响 1958-2003年青藏高原3月积雪厚度与南海夏季风爆发时间存在着很好的正相关。青藏高原3月积雪厚度偏厚时,其500毫巴以上的气温偏低,上层海陆之间的气温差是正值,南亚高压向西北方向的移动速度变慢,上层东风偏弱,西太平洋地区的上层辐散和下层辐合变弱,西太平洋暖池热含量偏少,南海夏季风爆发偏晚(弱)。同时,下层850毫巴东印度洋异常大气是东风和跨赤道反气旋对,南海被东风异常所控制,这种大气环流形势不利于南海夏季风的爆发;青藏高原3月积雪厚度偏薄时,其500毫巴以上的气温偏高,上层海陆之间的气温差是负值,上层南亚高压在南亚地区建立较早,上层东风偏强,西太平洋地区的上层辐散和下层辐合偏强,西太平洋暖池热含量偏多,南海夏季风爆发偏早(强)。同时,下层850毫巴东印度洋低层大气是西风异常和跨赤道气旋对,南海被西南风异常所控制,有利于南海夏季风的爆发。 研究结果还表明,青藏高原春季的积雪与厄尔尼诺事件存在着密切的关系。在厄尔尼诺鼎盛期的冬季,各种条件都有利于青藏高原的降雪,从而,来年春天的积雪则变厚,不利于南海季风的爆发。 3. 南海夏季风爆发的预测 1970年之后,西太平洋暖池的热含量与南海夏季风的爆发早晚有非常好的负相关。据此,我们可以通过西太平洋暖池热含量的变化来预测南海夏季风的爆发。通过暖池区海洋上层400米热含量的分析研究,我们找到了西太平洋暖池热含量变化的代表站点(以3N,138E为中心的1°×1°范围),其热含量变化能很好代表整个西太平洋暖池热含量的变化(相关系数大于0.85)。在此基础上,文章用1993-2007年热带大气海洋浮标列阵(TAO-Tropical Atmosphere Ocean-array)中最靠近该站点的浮标(2N, 137E)资料验证了上述选择站点的代表性和相应的预测能力。1993-2004年TAO浮标(2N, 137E)3月上层400米和500米海洋热含量与南海夏季风爆发时间的相关系数分别是-0.75,-0.73,置信度均超过99%;用1993-2007年4月份TAO浮标(2N, 137E)上层400米和500米海洋热含量与南海夏季风爆发时间作相关则相关系数均为-0.83,置信度超过99%。因此,我们可以通过3月或者4月份该TAO浮标(2N, 137E)的热含量来预测当年南海夏季风爆发的早(强)晚(弱)。 总之,南海夏季风爆发以1970年为界存在明显的年代际变化,1970年之前,主要受印度洋控制,1970年之后,南海夏季风爆发主要受控于太平洋(西太平洋暖池),这种变化是由北极涛动年代际变化引起的,。青藏高原春季积雪也对南海夏季风有重要影响,但主要受ENSO控制。因此,我们认为西太平洋—印度洋—青藏高原气候系统在南海夏季风爆发中起着重要的调控作用:西太平洋的作用当属第一位,印度洋的作用居第二,青藏高原的作用最弱。
Resumo:
利用ERA40逐日再分析资料、NCEP/NCAR2逐日再分析资料、中国740个测站日降水资料、上海台风研究所提供的西太平洋热带气旋资料、Kaplan等重建的月平均SSTA资料、NOAA逐日长波辐射(OLR)等资料,应用离散功率谱分析、带通滤波、EOF分析等统计方法,研究了东亚夏季风(EASM)的移动特征、东亚地区季节内振荡(ISO)的基本特征、季节内振荡对东亚夏季风活动的影响、季节内振荡对东亚夏季风异常活动的影响机理。主要结论如下: (1)综合动力和热力因素定义了可动态描述东亚夏季风移动和强度的指数,并利用该指数研究了东亚夏季风的爆发和移动的季节内变化及其年际和年代际变化特征。研究发现,气候平均东亚夏季风前沿分别在28候、33候、36候、38候、40候、44候出现了明显的跳跃。东亚夏季风活动具有显著的年际变率,主要由于季风前沿在某些区域异常停滞和突然跨越北跳或南撤引起,造成中国东部旱涝灾害频繁发生。东亚夏季风的活动具有明显的年代际变化,在1965年、1980年、1994年发生了突变,造成中国东部降水由“南旱北涝”向“南涝北旱”的转变。 (2)东亚季风区季节内变化具有10~25d和30~60d两个波段的季节内振荡周期,以30-60d为主。存在三个主要低频模态,第一模态主要表征了EASM在长江中下游和华北地区活动期间的低频形势;第二模态印度洋-菲律宾由低频气旋式环流控制,主要表现了ISO在EASM爆发期间的低频形势;第三模态主要出现在EASM在华南和淮河活动期间的低频形势。第一模态和第三模态是代表东亚夏季风活动异常的主要低频形势。 (3)热带和副热带地区ISO总是沿垂直切变风的垂直方向传播。因此,在南海-菲律宾东北风垂直切变和副热带西太平洋北风垂直切变下,大气热源激发菲律宾附近交替出现的低频气旋和低频反气旋不断向西北传播,副热带西太平洋ISO以向西传播为主。中高纬度地区,乌拉尔山附近ISO以向东、向南移动或局地振荡为主;北太平洋中部ISO在某些情况下向南、向西传播。 (4)季风爆发期,伴随着热带东印度洋到菲律宾一系列低频气旋和低频反气旋, 冷空气向南输送,10~25天和30~60天季节内振荡低频气旋同时传入南海加快了南海夏季风的爆发。在气候态下,ISO活动表现的欧亚- 太平洋(EAP)以及太平洋-北美(PNA)低频波列分布特征(本文提出的EAP和PNA低频波列与传统意义上的二维定点相关得到的波列不同)。这种低频分布形式使得欧亚和太平洋中高纬度的槽、脊及太平洋副热带高压稳定、加强,东亚地区的低频波列则成为热带和中高纬度ISO相互作用影响东亚夏季风活动的纽带。不同的阶段表现不同的低频模态,30~60d低频模态的转变加快了EASM推进过程中跳跃性;30-60d低频模态的维持使得EASM前沿相对停滞。 (5)30-60d滤波场,菲律宾海域交替出现的低频气旋和低频反气旋不断向西北传播到南海-西太平洋一带。当南海-西太平洋地区低频气旋活跃时,季风槽加强、东伸,季风槽内热带气旋(TC)频数增加;当南海-西太平洋低频反气旋活跃时,季风槽减弱、西退,TC处于间歇期,生成位置不集中。 (6)在El Nino态下,大气季节内振荡偏弱,北传特征不明显,但ISO由中高纬度北太平洋中部向南和副热带西太平洋向西的传播特征显著,东亚地区ISO活动以第三模态为主,EASM集中停滞在华南和淮河流域,常伴随着持续性区域暴雨的出现,易造成华南和江淮流域洪涝灾害,长江和华北持续干旱。在La Nina态下,大气季节内振荡活跃,且具有明显的向北传播特征,PNA低频波列显著,东亚地区ISO活动以第一模态单峰为主;EASM主要停滞在长江中下游和华北地区,这些地区出现异常持续强降水,华南和淮河流域多干旱;在El Nino态向La Nina态转换期,ISO活动以第一模态双峰为主,长江中下游常常出现二度梅。
Resumo:
In order to study the effects of different nitrogen source and concentration on the growth rate and fatty acid composition, a marine microalga Ellipsoidion sp. with a high content of eicosapentaenoic acid (EPA) was cultured in media with different nitrogen sources and concentrations. During the pre-logarithmic phase, the alga grew faster with ammonium as N source than with nitrate, but the reverse applied during the post-logarithmic phase. The alga grew poorly in N-free medium or medium with urea as the sole N source. In the same growth phase, ammonium medium resulted in higher yield of total lipid, but the EPA yield did not differ significantly different from that using nitrate medium. The maximum growth rate occurred in medium containing 1.28 mmol L-1 sodium nitrate, while maximum EPA and total lipid contents were reached at 1.92 mmol L-1, when EPA accounted for 27.9% total fatty acids. The growth rate kept stable when NH4Cl ranged from 0.64 to 2.56 mmol L-1, and the maximum content of total lipid and EPA occurred in the medium with 2.56 mmol L-1 NH4Cl. The EPA content was higher in the pre- than post-logarithmic phase, though the total lipid content was lower. The highest EPA content expressed as percent total fatty acid was 27.9% in nitrate medium and and 39.0% in ammonium medium.
Resumo:
Fractured oil and gas reservoir is an important type of oil and gas reservoir, which is taking a growing part of current oil and gas production in the whole world. Thus these technologies targeted at exploration of fractured oil and gas reservoirs are drawing vast attentions. It is difficult to accurately predict the fracture development orientation and intensity in oil and gas exploration. Focused on this problem, this paper systematically conducted series study of seismic data processing and P-wave attributes fracture detection based on the structure of ZX buried mountain, and obtained good results. This paper firstly stimulated the propagation of P-wave in weak anisotropic media caused by vertical aligned cracks, and analyzed the rule of P-wave attributes’ variation associated with observed azimuth, such as travel-time, amplitude and AVO gradient and so on, and quantitatively described the sensitive degree of these attributes to anisotropy of fracture medium. In order to further study the sensitive degree of these attributes to anisotropy of fractures, meanwhile, this paper stimulated P-wave propagation through different types and different intensity anisotropic medium respectively and summarized the rule of these attributes’ variation associated with observed azimuth in different anisotropic medium. The results of these studies provided reliable references for predicting orientation, extensity and size of actual complicated cracked medium by P-wave azimuth attributes responses. In the paper, amounts of seismic data processing methods are used to keep and recover all kinds of attributes applied for fracture detection, which guarantee the high accurate of these attributes, thus then improve the accurate of fracture detection. During seismic data processing, the paper adopted the three dimensional F-Kx-Ky field cone filter technique to attenuate ground roll waves and multiple waves, then enhances the S/N ratio of pre-stack seismic data; comprehensively applying geometrical spread compensation, surface consistent amplitude compensation, residual amplitude compensation to recover amplitude; common azimuth processing method effectively preserves the azimuthal characteristics of P-wave attributes; the technique of bend ray adaptive aperture pre-stack time migration insures to obtain the best image in each azimuth. Application of these processing methods guaranteed these attributes’ accuracy, and then improved the accuracy of fracture detection. After comparing and analyzing a variety of attributes, relative wave impedance (relative amplitude) attribute is selected to inverse the orientation of fracture medium; attenuation gradient and corresponding frequency of 85% energy are selected to inverse the intensity of fracture medium; then obtained the fracture distribution characteristics of lower Paleozoic and Precambrian in ZX ancient buried mountains. The results are good accord with the characteristics of faults system and well information in this area.
Resumo:
It has been shown in CA simulations and data analysis of earthquakes that declustered or characteristic large earthquakes may occur with long-range stress redistribution. In order to understand long-range stress redistribution, we propose a linear-elastic but heterogeneous-brittle model. The stress redistribution in the heterogeneous-brittle medium implies a longer-range interaction than that in an elastic medium. Therefore, it is surmised that the longer-range stress redistribution resulting from damage in heterogeneous media may be a plausible mechanism governing main shocks.
Resumo:
A novel double-slab Nd:YAG laser, which uses face-pumped slab medium cooled by liquid with different temperatures on both sides, is proposed. The thermal distortion of wavefront caused by the non-uniform temperature distribution in the laser gain media can be self-compensated. According to the method of operation, the models of the temperature distribution and stress are presented, and the analytic solutions for the model are derived. Furthermore, the numerical simulations with pulse pumping energy of 10 J and repetition frequencies of 500 and 1000 Hz are calculated respectively for Nd:YAG laser medium. The simulation results show that the temperature gradient remains the approximative linearity, and the heat stress is within the extreme range. Then the absorption coefficient is also discussed. The result indicates that the doping concentration cannot be too large for the high repetition frequency laser. It has been proved that the high repetition frequency, high laser beam quality, and high average output power of the order of kilowatt of Nd: YAG slab laser can be achieved in this structure.
Resumo:
The not only lower but also uniform MEMS chip temperatures can he reached by selecting suitable boiling number range that ensures the nucleate boiling heat transfer. In this article, boiling heat transfer experiments in 10 silicon triangular microchannels with the hydraulic diameter of 55.4 mu m were performed using acetone as the working fluid, having the inlet liquid temperatures of 24-40 degrees C, mass fluxes of 96-360 kg/m(2)s, heat fluxes of 140-420 kW/m(2), and exit vapor mass qualities of 0.28-0.70. The above data range correspond to the boiling number from 1.574 x 10(-3) to 3.219 x 10(-3) and ensure the perfect nucleate boiling heat transfer region, providing a very uniform chip temperature distribution in both streamline and transverse directions. The boiling heat transfer coefficients determined by the infrared radiator image system were found to he dependent on the heat Axes only, not dependent on the mass Axes and the vapor mass qualities covering the above data range. The high-speed flow visualization shows that the periodic flow patterns take place inside the microchannel in the time scale of milliseconds, consisting of liquid refilling stage, bubble nucleation, growth and coalescence stage, and transient liquid film evaporation stage in a full cycle. The paired or triplet bubble nucleation sites can occur in the microchannel corners anywhere along the flow direction, accounting for the nucleate boiling heat transfer mode. The periodic boiling process is similar to a series of bubble nucleation, growth, and departure followed by the liquid refilling in a single cavity for the pool boiling situation. The chip temperature difference across the whole two-phase area is found to he small in a couple of degrees, providing a better thermal management scheme for the high heat flux electronic components. Chen's [11 widely accepted correlation for macrochannels and Bao et al.'s [21 correlation obtained in a copper capillary tube with the inside diameter of 1.95 mm using R11 and HCFC123 as working fluids can predict the present experimental data with accepted accuracy. Other correlations fail to predict the correct heat transfer coefficient trends. New heat transfer correlations are also recommended.
Resumo:
The refractive indices of particles and dispersion medium are important parameters in many colloidal experiments using optical techniques, such as turbidity and light scattering measurements. These data are in general wavelength-dependent and may not be available at some wavelengths fitting to the experimental requirement. in this Study we present a novel approach to inversely determine the refractive indices of particles and dispersion medium by examining the consistency of measured extinction cross sections of particles with their theoretical values using a series of trial values of the refractive indices. The colloidal suspension of polystyrene particles dispersed in water was used as an example to demonstrate how this approach works and the data obtained via such a method are compared with those reported in literature, showing a good agreement between both. Furthermore, the factors that affect the accuracy of measurements are discussed. We also present some data of the refractive indices of polystyrene over a range of wavelengths smaller than 400 nm that have been not reported in the available literature. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A complete development for the higher-order asymptotic solutions of the crack tip fields and finite element calculations for mode I loading of hardening materials in plane strain are performed. The results show that in the higher-order asymptotic solution (to the twentieth order), only three coefficients are independent. These coefficients are determined by matching with the finite element solutions carried out in the present paper (our attention is focused on the first five terms of the higher-order asymptotic solution). We obtain an analytic characterization of crack tip fields, which conform very well to the finite element solutions over wide range. A modified two parameter criterion based on the asymptotic solution of five terms is presented. The upper bound and lower bound fracture toughness curves predicted by modified two parameter criterion are given. These two curves agree with most of the experimental data and fully capture the proper trend.
Resumo:
A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.
Resumo:
The phase-matching condition of high-order harmonic generation driven by intense few-cycle pulses could be controlled by adding second-harmonic pulses to change the ionization fraction of the gaseous medium. The harmonic generation efficiency could be improved by moving the phase-matching point with an all-optical control of the ionization fraction or a proper change of the confocal parameter. A specific order of harmonics could be easily controlled to reach phase matching at a fixed higher gas pressure by adding second-harmonic pulses with a suitable intensity. Such an all-optical phase-matching control was demonstrated to be dependent upon the temporal delay between the fundamental-wave and second harmonic pulses.
Resumo:
Phylogenetic relationships among 37 living species of order Carnivora spanning a relatively broad range of divergence times and taxonomic levels were examined using nuclear sequence data from exon1 of the IRBP gene (approximate to1.3 kb) and first intron