205 resultados para matrix-assisted laser desorption-mass spectrometry (MALDI-MS)
Resumo:
Porous silicon powder and silica gel particles have been applied as inorganic matrices for the analysis of small molecules in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS). In contrast to conventional MALDI-TOFMS, the signal interference of low-molecular analytes by the matrix has been eliminated. Almost no fragmentations of the analytes were observed. Effects of various factors, such as the particle and pore size, the suspending solution, and sample preparation procedures, on the intensity of mass spectra have been investigated. The pore structure of the inorganic matrix and penetration of the analytes into the pores must be optimized for effective desorption and ionization of the analytes. Matrices (DHB and HCCA) were covalently bound to silica gel for improvement of spectrum intensity. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MAIDI-TOF-MS) was used for analysis of poly(arylene phosphonate) cyclic oligomers. A comparison was made by using 1,8,9-dithranol, 2,5-dihydroxybenzoic acid and retinoic acid as the matrix. The result showed that the retinoic acid produced the strongest ion signals under the conditions used. Different salts of metals were used as the cationization agents to examine the effect on the cyclic oligomers. It was found that the salts could produce metal-cyclic oligomer cation spectra and lithium was the stronger one than those of silver so, the suitable matrix and cationization agent for the new cyclic oligmer were obtained. They were very effective for the analysis of poly(arylene phosphonate) cyclic oligomer.
Resumo:
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to study a series of synthetic cationic porphyrins as the perchlorate and bromide salts. This work presents the analytical results for the porphyrins obtained using 2,5-dihydroxybenzoic acid (DHB) and 1,8,9-anthratriol as matrices. The selective use of matrix affects ion formation from these porphyrins. By using DHB as the matrix, we not only observed [M - nCIO(4)](+) (n = 1-4) ions, but also obtained [2M - nCIO(4)](+) (n = 2-7) ions from the synthetic cationic porphyrins. The space volume of the side chains (R groups) and the nature of the anions (Br- or CIO4-) affected the relative importance of monomeric and dimeric ions of the porphyrin. The possible mechanisms of desorption and ionization of these cationic porphyrins were also considered in this study. MALDI-TOFMS proved to be a very useful method for obtaining structural information on these synthetic cationic porphyrins. Copyright (C) 1999 John Whey & Sons, Ltd.
Resumo:
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry is difficult for the characterization of noncovalent complexes hitherto because of the limitations in acidic matrix, sample preparation, laser-induced polymerization and adduct formation with matrix. Under our experimental conditions, sinapinic acid is used as a matrix, the specific noncovalent interactions of protein with fullerenols were observed by MALDI mass spectrometry. Some mass spectrometric features, such as mass shifts, broad adduct peaks and stoichiometries, showed that the specific non-covalent complexes between protein and fullerenols have been formed at a ratio of 1 : 4 for hemoglobin-fullerenols or 1 : 1 for myoglobin-fullerenols. The results implied that fullereneols could be used to protect partly hemoglobin from decomposition in acidic media, and therefore, it is possible to realize the molecular weight determination of a quaternary protein by MALDI mass spectrometry via the addition of specific organic compound in the matrix.
Resumo:
In the present paper a study of C-19-diterpene type of aconitum alkaloids, extracted from aconite roots in Aconitum carmichaeli Debx has been made using matrix-assisted laser desorption/ionization time of Eight mass spectrometry (MALDI-TOFMS), The results demonstrated that the aconitum alkaloids from aconite roots can be determined simultaneously by this method, which was found to be superior to other analytical methods with regard to speed and sensitivity. Fourteen known aconitum alkaloids, including aconitines, benzoylaconitines and lipoaconitines, were assigned in the methanol extract and three compounds not reported before have been targeted separation. The evaluation of the efficiency of different extractions has been studied. These results suggested that the differences of the polarity and basicity of aconitine, and benzoylaconitines and lipoaconitines result from the C-8 constituent groups that are easily lost under MALDI, (C) 1998 John Wiley & Sons, Ltd.
Resumo:
The purity and molecular weight of calmodulin have been determined by means of matrix-assisted laser desorption/ionization time of flight mass spectrometry, and the results have been discussed. The experimental results demonstrate that this method is high sensitive and rapid as compared with other traditional methods.
Resumo:
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to analyze two enzymes, phospholipase AZ and fibrinolytic enzyme isolated from Chinese Agkistrodon blomhoffii Ussurensis venom. Using sinapinic acid as the matrix, positive ion mass spectra of the enzymes were obtained, In addition to the dominant protein [M+H](+) ions, multimeric and multiply charged ions were also observed in the mass spectra, The higher the concentration of the enzymes, the more multiply charged polymer and multimeric ions were detected, Our results indicate that MALDI-TOFMS can provide a rapid and accurate method for molecular weight determination of snake venom enzymes, Mass accuracies of 0.1 and 0.3 % were achieved by analysis of highly dialyzed phospholipase A2 and fibrinolytic enzyme, and these results are much better than those obtained using sodium dodecyl sulfate-palyacrylamide gel electrophoresis. MALDI-TOFMS thus provides a reliable method to determine the purity and molecular weight of these enzymes, which are of potential use as therapeutants, Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Molecular weight of 8 ginsenosides and the component of total saponions in American ginseng have been determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The average error of the molecular weight of each ginsenoside was found less than 0.05%. The results demonstrate that MALDI-MS is a very simple and useful method to measure the molecular weight of some high polar, thermal unstable small molecules with high sensitivity and reproducibility.
Resumo:
Thirteen extracting solutions of rare-earth metallofullerenes containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb respectively have been investigated by means of matrix-assisted laser desorption/ionization time-of-night, mass spectrometry. The influences of the positive-ion/negative-ion mode, laser intensity, matrix and mass discrimination to the analytical results are studied, based on which the optimal analytical conditions have been determined. The results show that the extracting solutions contain large quantities of rare-earth metallofullerenes brs;des empty fullerenes, On the basis of comparing their relative intensities, the different structure stabilities and solubilities of metallofullerenes with different rare-earth metals encapsulated into the fullerene cages, as well as some possible reasons to those differences, are discussed.
Resumo:
A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 muL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized. (C) 2004 American Society for Mass Spectrometry.
Carbon Nanotubes as Assisted Matrix for laser Desorption/Lonization Time-of-Flight Mass Spectrometry
Resumo:
Sodium dodecyl sulfate(SDS) is a powerful solubilizing detergent which is often used during the separation of highly complex protein mixtures by one- or two-dimensional (2D) gel electrophoresis. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely used technique for mass spectrometric analysis of some protein molecules compared to other techniques. But the presence of SDS or some salts usually leads to signal deterioration when using MALDI-MS. A method for using nitrocellulose membrane as the solid-phase carrier combined with n-octyl-beta-D-glucopyranoside in the matrix highly enhances the sensitivity of the molecular mass determination of lysozyme. This technique has the advantage that the signal-to-noise of the molecular weight profile is improved compared with the mass spectrum and the profile is relatively easy to interpret.
Resumo:
High-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometry was developed and applied to the proteome analysis of bronchoalveolar lavage fluid (BALF) from a patient with pulmonary alveolar proteinosis. With use of 1-D and 2-D gel electrophoresis, surfactant protein A (SP-A) and other surfactant-related lung alveolar proteins were efficiently separated and identified by matrix-assisted laser desorption/ionization FTICR mass spectrometry . Low molecular mass BALF proteins were separated using a gradient 2-D gel. An efficient extraction/precipitation system was developed and used for the enrichment of surfactant proteins. The result of the BALF proteome analysis show the presence of several isoforms of SP-A, in which an N-non-glycosylierte form and several proline hydroxylations were identified. Furthermore, a number of protein spots were found to contain a mixture of proteins unresolved by 2-D gel electrophoresis, illustrating the feasibility of high-resolution mass spectrometry to provide identifications of proteins that remain unseparated in 2-D gels even upon extended pH gradients.
Resumo:
Combination of affinity extraction procedures with mass spectrometric analyses is termed affinity-directed mass spectrometry, a technique that has gained broad interest in immunology and is extended here with several improvements from methods used in previous studies. A monoclonal antibody was immobilized on a nitrocellulose (NC) membrane, allowing the corresponding antigen to be selectively captured from a complex solution for analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method was also used to rapidly determine the approximate binding region responsible for the antibody/antigen interaction. The tryptic fragments of antigen protein in buffer were applied to the antibody immobilized on NC film and allowed to interact. The NC film was then washed to remove salts and other unbound components, and subjected to analysis by MALDI-TOFMS. Using interferon-alpha (2a) and anti-interferon-alpha (2a) monoclonal antibody IgG as a model system, we successfully extracted the antigen protein and determined the approximate binding region for the antigen/antibody interaction (i.e., the tryptic fragment responsible). Copyright (C) 2001 John Wiley & Sons, Ltd.