80 resultados para mathematical model,
Resumo:
A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.
Resumo:
改进了适合于高寒草甸生态系统的陆地生态圈模式,分析了模式中温度变化与水分运动分层的物理原因,说明了气候状况对地表面能量交换的影响,给出了净辐射和蒸散量新的计算方法,提出了有很差分计算中具有二阶精度的Euler隐式格式,介绍了中国科学院海北高寒草甸生态站的气候概况和野外观测情况。最后利用本模式对高寒草甸生态站地区的土壤-植被-大气间水热交换过程进行了数值模拟,模拟值与实测值吻合较好。
Resumo:
目前从天然气水合物中开采天然气的方法,主要有热激发法、化学试剂法和减压法.文章通过适当简化,从理论上推导出减压法开采天然气的数值模型和水合物分解前缘边界曲面离井筒距离表达式,并对推导出的偏微分方程经过线性简化和自相似原理,推导出多孔介质水合物地层中压力和温度的分布方程和天然气产量方程.通过实例,研究了多孔介质水合物地层中压力和温度的分布规律,即离井筒越近,压力和温度越小.进行了影响水合物分解前缘边界曲面离井筒距离各影响因素的敏感性分析,得到了减小井筒压力和增大地层温度可以使离井筒越远地方的水合物层分解释放出天然气,天然气的产量随着开采时间的增大而逐渐减小但最终趋于一稳定值的结论。
Resumo:
目的 建立能反映体位改变的单一血管血流动力学分布参数模型,探讨重力对血管中血流压力的影响.方法 在一般的血流动力学模型中引入体力项,数值模拟体位不同时,重力对血流压力的影响.结果 体位不同时,重力可引起血流压力的变化不同.结论新建的血流动力学分布参数模型可以为研究体位改变引起心血管功能指标的变化提供帮助.
Resumo:
A new mathematical model for the transient flow in the composite low permeability is established. It is solved by FEM with different boundary conditions such as infinite, circular closed and constant pressure boundary conditions. The typical curves for transient wellbore pressure have been presented. It is shown that the pressure and pressure derivative curves with composite start-up pressure gradients have different slopes which are depended on the start-up pressure gradients and the mobility radios in different regions. The boundary effects are the same as the normal reservoirs without start-up pressure gradients. The study provides a new tool to analyze the transient pressure test data in the low permeability reservoir.
Resumo:
The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.
目录
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references
Resumo:
According to the experimental results and the characteristics of the pressure-sensitive fractured formation, a transient flow model is developed for the deep naturally-fractured reservoirs with different outer boundary conditions. The finite element equations for the model are derived. After generating the unstructured grids in the solution regions, the finite element method is used to calculate the pressure type curves for the pressure-sensitive fractured reservoir with different outer boundaries, such as the infinite boundary, circle boundary and combined linear boundaries, and the characteristics of the type curves are comparatively analyzed. The effects on the pressure curves caused by pressure sensitivity module and the effective radius combined parameter are determined, and the method for calculating the pressure-sensitive reservoir parameters is introduced. By analyzing the real field case in the high temperature and pressure reservoir, the perfect results show that the transient flow model for the pressure-sensitive fractured reservoir in this paper is correct.
Resumo:
A set of experimental system to study hydrate dissociation in porous media is built and some experiments on hydrate dissociation by depressurization are carried out. A mathematical model is developed to simulate the hydrate dissociation by depressurization in hydrate-bearing porous media. The model can be used to analyze the effects of the flow of multiphase fluids, the kinetic process and endothermic process of hydrate dissociation, ice-water phase equilibrium, the variation of permeability, convection and conduction on the hydrate dissociation, and gas and water productions. The numerical results agree well with the experimental results, which validate our mathematical model. For a 3-D hydrate reservoir of Class 3, the evolutions of pressure, temperature, and saturations are elucidated and the effects of some main parameters on gas and water rates are analyzed. Numerical results show that gas can be produced effectively from hydrate reservoir in the first stage of depressurization. Then, methods such as thermal stimulation or inhibitor injection should be considered due to the energy deficiency of formation energy. The numerical results for 3-D hydrate reservoir of Class 1 show that the overlying gas hydrate zone can apparently enhance gas rate and prolong life span of gas reservoir.
Resumo:
Internal waves are an important factor in the design of drill operations and production in deep water, because the waves have very large amplitude and may induce large horizontal velocity. How the internal waves occur and propagate over benthal terrain is of great concern for ocean engineers. In the present paper, we have formulated a mathematical model of internal wave propagation in a two-layer deep water, which involves the effects of friction, dissipation and shoaling, and is capable of manifesting the variation of the amplitude and the velocity pattern. After calibration by field data measured at the Continental Slope in the Northern South China Sea, we have applied the model to the South China Sea, investigating the westward propagation of internal waves from the Luzon Strait, where internal waves originate due to the interaction of benthal ridge and tides. We find that the internal wave induced velocity profile is obviously characterized by the opposite flow below and above the pycnocline, which results in a strong shear, threatening safety of ocean structures, such as mooring system of oil platform, risers, etc. When internal waves propagate westwards, the amplitude attenuates due to the effects of friction and dissipation. The preliminary results show that the amplitude is likely to become half of its initial value at Luzon Strait when the internal waves propagate about 400 kilometers westwards.
Resumo:
重力是体位改变过程中最基本的生物力学刺激因素.血流压力是表征心血管功能状态的一个基本指标.目前,体位改 变影响心血管系统的确切内部机制尚不清楚.为此,采用在流体和固体方程中分别引入体力项的方法,建立一个基于血流动 力学概念的三维流固耦合数学模型,用以研究体位改变,确切量化重力对血流压力的影响.通过数值计算,得到以下结果. 水平卧位条件下:a.单一血管中血流压力由无重力影响的轴对称二维分布变为重力影响下的三维不对称分布;b.随着进出 口压差由小变大,重力对压力分布和极值的影响由大变小,当压差值分别达到10 665.6 Pa(80 mmHg)和2 666.4 Pa(20 mmHg) 时,重力的影响就不再随进出口压差增大而变化;对三维单一流体,重力影响的总体趋势类似.对正、倒直立位,压力均为 二维轴对称分布,其重力影响强度约为水平卧位的2 倍以上.结果表明:基于血流动力学概念,引入体力项,建立三维流固 耦合模型为研究体位改变提供了一种新思路,重力对单一血管中血流压力分布和大小的影响因体位不同而不同,并与进出口 压差密切相关,提示,若血管进出口压差较小,忽略重力影响,不考虑体位改变,以二维轴对称模型来研究血管中血流状 态,须谨慎解释所得结果.
Resumo:
Aperture patterns play a vital role in coded aperture imaging ( CAI) applications. In recent years, many approaches were presented to design optimum or near-optimum aperture patterns. Uniformly redundant arrays (URAs) are, undoubtedly, the most successful for constant sidelobe of their periodic autocorrelation function. Unfortunately, the existing methods can only be used to design URAs with a limited number of array sizes and fixed autocorrelation sidelobe-to-peak ratios. In this paper, we present a novel method to design more flexible URAs. Our approach is based on a searching program driven by DIRECT, a global optimization algorithm. We transform the design question to a mathematical model, based on the DIRECT algorithm, which is advantageous for computer implementation. By changing determinative conditions, we obtain two kinds of types of URAs, including the filled URAs which can be constructed by existing methods and the sparse URAs which have never been mentioned by other authors as far as we know. Finally, we carry out an experiment to demonstrate the imaging performance of the sparse URAs.
Resumo:
针对高功率激光装置四程放大系统的特点,利用矩阵光学原理,建立了四程放大准直系统的数学模型;基于此模型,设计了四程放大系统的准直调整方案;得出了近、远场偏移量与调整量关系的解析解.
Resumo:
Genetically improved transgenic fish possess many beneficial economic traits; however, the commercial aquaculture of transgenic fish has not been performed till date. One of the major reasons for this is the possible ecological risk associated with the escape or release of the transgenic fish. Using a growth hormone transgenic fish with rapid growth characteristics as a subject, this paper analyzes the following: the essence of the potential ecological risks posed by transgenic fish; ecological risk in the current situation due to transgenic fish via one-factor phenotypic and fitness analysis, and mathematical model deduction. Then, it expounds new ideas and the latest findings using an artificially simulated ecosystem for the evaluation of the ecological risks posed by transgenic fish. Further, the study comments on the strategies and principles of controlling these ecological risks by using a triplold approach. Based on these results, we propose that ecological risk evaluation and prevention strategies are indispensable important components and should be accompanied with breeding research in order to provide enlightments for transgenic fish breeding, evaluation of the ecological risks posed by transgenic fish, and development of containment strategies against the risks.
Resumo:
In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.
Resumo:
A new measurement method for GaN films and their Schottky contacts is reported in this paper. Instead of the fabrication of Ohmic contacts, this measurement is based on a special back-to-back Schottky diode that has a rectifying character. A mathematical model indicates that the electronic parameters of the materials can be deduced from the device's I-V data. In the experiment of an unintentionally doped n-type GaN layer with a residual carrier density 7 x 10(16) cm(-3), the analysis by the new method gives the layer's sheet resistance rho(s) = 497 Omega, the electron mobility mu(n) =, 613 cm(2) V-1 s(-1) and the ideality factor of the Ni/Au-GaN Schottky contacts n = 2.5, which are close to the data obtained by the traditional measurements: rho(s) = 505 Omega, mu(n) = 585 cm(2) V-1 s(-1) and n = 3.0. The method reported can be adopted not only for GaN films but also for other semiconductor materials, especially in the cases where Ohmic contacts of high quality are hard to make or their fabricating process affects the film's character.