19 resultados para mathematical misconceptions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A predictive and self-consistent mathematical model incorporating the electrochemical, chemical and ionic migration processes characterizing the propagation stage of crevice and pitting corrosion in metals is described. The model predicts the steady-state solution chemistry and electrode kinetics (and hence metal penetration rates) within an active corrosion cavity as a function of the many parameters on which these depend, such as external electrode potential and crevice dimensions. The crevice is modelled as a parallel-sided slot filled with a dilute sodium chloride solution. The cavity propagation rates are found to be faster in the case of a crevice with passive walls than one with active walls. The distribution of current over the internal surface of a crevice with corroding walls can be assessed using this model, giving an indication of the future shape of the cavity. The model is extended to include a solid hydroxide precipitation reaction and considers the effect of consequent changes in the chemical and physical environment within the crevice on the predicted corrosion rates. In this paper, the model is applied to crevice and pitting corrosion in carbon steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-plate (NIP) mathematical model was proposed by frontal analysis to evaluate nonlinear chromatographic performance. One of its advantages is that the parameters may be easily calculated from experimental data. Moreover, there is a good correlation between it and the equilibrium-dispersive (E-D) or Thomas models. This shows that it can well accommodate both types of band broadening that is comprised of either diffusion-dominated processes or kinetic sorption processes. The MP model can well describe experimental breakthrough curves that were obtained from membrane affinity chromatography and column reversed-phase liquid chromatography. Furthermore, the coefficients of mass transfer may be calculated according to the relationship between the MP model and the E-D or Thomas models. (C) 2004 Elsevier B.V. All rights reserved.