183 resultados para liquid-gas phase transition
Resumo:
The experimental results reveal the isospin dependence of the nuclear phase transition in terms of the Landau Free Energy description of critical phenomena. Near the critical point, different ratios of the neutron to proton concentrations lead to different critical points for the phase transition which is analogous to the phase transitions in He-4-He-3 liquid mixtures. The antisymmetrized molecular dynamics (AMD) and GEMINI models calculations were also performed and the results will be discussed as well.
Resumo:
A novel conjugated oligomer, oligo(9,9'-dioctylfluorene-alt-bithiophene) (OF8T2), was found to exhibit a unique phase transition between crystalline and liquid-crystalline states, and a liquid-crystalline glass was easily generated, offering better TFT device performance. In thin films, upon annealing the OF8T2 molecules oriented preferentially with their planes of conjugation being normal to the substrate, and both film thickness and annealing temperature were critical to the film morphology and the molecular orientation. When the OF8T2 film was deposited on a rubbed polyimide surface and annealed, the molecules aligned their long axes along the rubbing direction.
Resumo:
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10
Resumo:
The phase transition and transition kinetics of a liquid crystalline copoly(amide-imide) (PAI37), which was synthesized from 70 mol% pyromellitic dianhydride, 30 mol% terephthaloyl chloride, and 1,3-bis[4-(4'-aminophenoxy)cumyl]benzene, was characterized by differential scanning calorimetry, polarized light microscopy, X-ray diffraction, and rheology. PAI37 exhibits a glass transition temperature at 182 degreesC followed by multiple phase transitions. The crystalline phase starts to melt at similar to 220 degreesC and forms smectic C (S-C) phase. The Sc phase transforms into smectic A (S-A) phase when the temperature is above 237 degreesC. The S-C to S-A transition spans a broad temperature range in which the S-A phase vanishes and forms isotropic melt. The WARD fiber pattern of PAI37 pulled from the anisotropic melt revealed an anomalous chain orientation, which was characterized by its layer normal perpendicular to the fiber direction. The transition kinetics for the mesophase and crystalline phase formation was also studied.
Resumo:
Molecule dynamics simulation was used on HPT(2,3,6,7,10,11-hexa-n-pentyloxytriphenylene), which is a discotic Liquid crystal. From analyzing the energy and displacement varying with the temperature, the phase transition temperature of PM6MPP can be predicted. The deviations of T-g, T-m and T-i due to the MD time scale are small enough that it should be possibly used to predict the material properties especially when more powerful computers are available.
Resumo:
The reaction character of m/z183 and 184 ions generated from ion -molecule reaction of toluene under self-chemical ionization was studied using Collision-Induced Dissociation (CID). The results Show that the m/z183 and 184 ions have several transition state structures; such as diphenyl methane derivative, alpha-bond structure formed between toluene and tropylium, pi-complex formed between toluene radical ion and toluene and pi-complex consisted of benzyl ion and toluene.
Resumo:
With Mass Analyzed Ion Kinetic Energy Spectrometry (MIKES), Collisional Induced Dissociation(CID), and Electron Capture Induced Decomposition(ECID) technigues, the doubly charged ions and singly charged ions from o(-), m(-), and p(-) diol benzene in the EI source have been studied. In terms of the values of the kinetic energy releases(T) of the charge separation reactions of the doubly charged ions and the estimated intercharge distances(R) of the exploding doubly charged ions the transition structures were proposed. Some structural information about the transition states was also obtained. It is of interest that the MIKES/CID spectra of singly charged ions [C6H6O2](+) from the three isomers are of significant differences.
Resumo:
Superconductor mixed oxides were often used as catalysts at higher temperature in gas phase oxidations, and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of YBa2Cu3O7+/-x and Y2BaCuO5+/-x in the phenol hydroxylation at lower temperature with H2O2 as oxygen donor was studied, and found that the superconductor YBa2Cu3O7+/-x, has no catalytic activity for phenol hydroxylation, but Y2BaCuO5+/-x does, even has better catalytic activity and stability than most previously reported ones. With the studies of catalysis of other simple metal oxides and perovskite-like mixed oxides, a radical substitution mechanism is proposed and the experimental facts are explained clearly, and draw a conclusion that the perovskite-like mixed oxides with (AO)(ABO(3)) and (AO)2(ABO(3)) structure have better catalytic activity than the simple perovskite oxides with (ABO(3))(3) structure alone, and (AO) structure unit is the key for the mixed oxides to have the phenol hydroxylation activity. No pollution of this process is very important for its further industrial application.
Resumo:
Superconductor mixed oxides are often used as catalysts at high temperature in gas-solid phase oxidations and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of La2-xSrxCuO4+/-lambda (x = 0, 0.1, 0.7, 1) mixed oxides in phenol hydroxylation at lower temperatures are studied, and we find that the value of x has a significant effect on catalytic activity: the lower its value, the higher the catalytic activity; a mechanism is proposed to explain the experimental phenomena.
Resumo:
The unimolecular dissociation reactions of doubly charged ions were reported, which resulted from a tandem mass spectrometer and a reversed geometry double focusing mass spectrometer by electron impact, Mass analyzed ion kinetic energy spectrometry (MIKES) was used to obtain the kinetic energy releases in charge separation reactions of doubly charged ions, The intercharge distances between the two charges at transition states can be calculated from the kinetic energy releases, Transition structures of unimolecular dissociation reactions were infered from MIKES and MS/MS.
Resumo:
The unimolecular charge separation reactions of the doubly charged ions FeC10H102+, FeC10H theta 2+, FeC10H82+ produced in the ion source by electron impact from ferrocene have been studied using Mass analyzed Ion Kinetic Energy Spectrometry (MIKES) technique. From the values of the kinetic energy releases (T), the intercharge distances (R) of the exploding doubly charged ions in their transition structures have been estimated and some structural informations about the transition states can be obtained. The collision induced reactions of the FeC10H102+ ion with Ar have been studied using MIKES, we postulate a new type of continuing reaction which may be "collisional charge separation induced dissociation".
Resumo:
The structures of CH5O+ from two different reactions which are protonation of CH3OH from the above two pathways possess the same structures, CH3OH2+. The value of kinetic energy release for the metastable decomposition CH2OH3+-> CH2OH+ + H-2 determined from the experiment is in good agreement with that from theoretical calculations. The transition state of above reaction were disscussed.
Resumo:
The heat capacities of crystalline and liquid n-hexatriacontane were measured with an automatic adiabatic calorimeter over the temperature range of 80-370 K. Two solid-to-solid phase transitions at the temperatures of 345.397 and 346.836 K, and a fusion at the temperature of 348.959 K have been observed. The enthalpies and entropies of these phase transitions as well as the chemical purity of the substance were determined on the basis of the heat capacity measurements. Thermal decomposition temperatures of the compound were measured by thermogravimetric analysis. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The phase behavior of liquid crystalline in the ternary system of dodecyl dimethyl ammonium hydroxyl propyl sulfonate(DDAHPS)/1-pentanol(C5H11OH)/water deuteron (D2O) has been investigated by polarizing optical microscopy, H-2 NMR spectroscopy methods. The results indicate that two kinds of liquid crystals (the lamellar, and the hexagonal) exist in the liquid crystalline phase region. In this paper, we also use the polarized Raman spectroscopy method to measure the values of the order/disorder parameters and the values of the environment polarity parameters for the samples selected from the liquid crystalline phase region, and compare these two parameters of the samples with those of solid state DDAHPS and liquid state pentan-1-ol.