211 resultados para line difference
Resumo:
A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyperbolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes. Boundary conditions formulated need only one unknown variable for third-order FC-ENO scheme and two unknown variables for fifth-order FC-ENO scheme. Numerical test results of the proposed FC-scheme were compared with traditional TVD, ENO and WENO schemes to demonstrate its high-order accuracy and high-resolution.
Resumo:
Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.
Resumo:
EEnzyme activity of commercial glucose oxidase was enhanced after purification through a strong anionic exchange resin. In order to get a better insight into this phenomenon, surface pressure–area ( –A) isotherms and surface pressure–time ( –t) isotherms was used to study the interaction and the absorption at different pH values of the subphases between octadecylamine and glucose oxidase purified by a styrene system quaternary ammonium type strongly basic anionic exchange resin. Circular dichroism (CD), electrophoresis and enzyme activity measurements were conducted to study these phenomena. A preliminary hypothesis has been suggested to explain why the enzyme activity of purified glucose oxidase was higher than that of the commercial one. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Using dimensional analysis and finite-element calculations we determine the functional form of indentation loading curves for a rigid conical indenter indenting into elastic-perfectly plastic solids. The new results are compared with the existing theories of indentation using conical indenters, including the slip-line theory for rigid-plastic solids, Sneddon's result for elastic solids, and Johnson's model for elastic-perfectly plastic solids. In the limit of small ratio of yield strength (Y) to Young's modulus (E), both the new results and Johnson's model approach that predicted by slip-line theory for rigid-plastic solids. In the limit of large Y/E, the new results agree with that for elastic solids. For a wide range of Y/E, some difference is found between Johnson's model-and the present result. This study also demonstrates the possibilities and limitations of using indentation loading curves to extract fundamental mechanical properties of solids.
Resumo:
This paper explores an on-line experimental method to highlight the process of internal damage development in composites by taking advantage of ultrasonic inspection. A loading device, which can work together with an ultrasonic inspection system, was designed, and the interlaminar shear damage of a double-sided grooved specimen of composite was examined on-line with the system. A full view of the progressive internal interlaminar damage, seen only with difficulty by common inspection methods, was successfully achieved.
Resumo:
The effect of the translational nonequilibrium on performance modeling of flowing chemical oxygen-iodine lasers (COIL) is emphasized in this paper. The spectral line broadening (SLB) model is a basic factor for predicting the performances of flowing COIL. The Voigt profile function is a well-known SLB model and is usually utilized. In the case of gas pressure in laser cavity less than 5 torr, a low pressure limit expression of the Voigt profile function is used. These two SLB models imply that ail lasing particles can interact with monochromatic laser radiation. Basically, the inhomogeneous broadening effects are not considered in these two SLB models and they cannot predict the spectral content. The latter requires consideration of finite translational relaxation rate. Unfortunately, it is rather difficult to solve simultaneously the Navier-Stokes (NS) equations and the conservation equations of the number of lasing particles per unit volume and per unit frequency interval. In the operating condition of flowing COIL, it is possible to obtain a perturbational solution of the conservational equations for lasing particles and deduce a new relation between the gain and the optical intensity, i.e., a new gain-saturation relation. By coupling the gain-saturation relation with other governing equations (such as the NS equations, chemical reaction equations and the optical model of gain-equal-loss), We have numerically calculated the performances of flowing COIL. The present results are compared with those obtained by the common rate-equation (RE) model, in which the Voigt profile function and its low pressure limit expression are used. The difference of different model's results is great. For instance, in the case of lasing frequency coinciding with the central frequency of line profile and very low gas pressure, the gain-saturation relation of the present model is quite different with that of the RE model.
Resumo:
In the present paper, a rubber wedge compressed by a line load at its tip is asymptotically analyzed using a special constitutive law proposed by Knowles and Sternberg (K-S elastic law) [J. Elasticity 3 (1973) 67]. The method of dividing sectors proposed by Gao [Theoret. Appl. Fract, Mech. 14 (1990) 219] is used. Domain near the wedge tip can be divided into one expanding sector and two narrowing sectors. Asymptotic equations of the strain-stress field near the wedge tip are derived and solved numerically. The deformation pattern near a wedge tip is completely revealed. A special case. i.e. a half space compressed by a line load is solved while the wedge angle is pi.
Resumo:
The self-assembling process near the three-phase contact line of air, water and vertical substrate is widely used to produce various kinds of nanostructured materials and devices. We perform an in-situ observation on the self-assembling process in the vicinity of the three phase contact line. Three kinds of aggregations, i.e. particle-particle aggregation, particle-chain aggregation and chain-chain aggregation, in the initial stage of vertical deposition process are revealed by our experiments. It is found that the particle particle aggregation and the particle-chain aggregation can be qualitatively explained by the theory of the capillary immersion force and mirror image force, while the chain-chain aggregation leaves an opening question for the further studies. The present study may provide more deep insight into the self-assembling process of colloidal particles.
Resumo:
For simulating multi-scale complex flow fields it should be noted that all the physical quantities we are interested in must be simulated well. With limitation of the computer resources it is preferred to use high order accurate difference schemes. Because of their high accuracy and small stencil of grid points computational fluid dynamics (CFD) workers pay more attention to compact schemes recently. For simulating the complex flow fields the treatment of boundary conditions at the far field boundary points and near far field boundary points is very important. According to authors' experience and published results some aspects of boundary condition treatment for far field boundary are presented, and the emphasis is on treatment of boundary conditions for the upwind compact schemes. The consistent treatment of boundary conditions at the near boundary points is also discussed. At the end of the paper are given some numerical examples. The computed results with presented method are satisfactory.
Resumo:
High order accurate schemes are needed to simulate the multi-scale complex flow fields to get fine structures in simulation of the complex flows with large gradient of fluid parameters near the wall, and schemes on non-uniform mesh are desirable for many CFD (computational fluid dynamics) workers. The construction methods of difference approximations and several difference approximations on non-uniform mesh are presented. The accuracy of the methods and the influence of stretch ratio of the neighbor mesh increment on accuracy are discussed. Some comments on these methods are given, and comparison of the accuracy of the results obtained by schemes based on both non-uniform mesh and coordinate transformation is made, and some numerical examples with non-uniform mesh are presented.
Resumo:
Results on bubble coalescences from the space experiment of thermocapillary bubble migration conducted on board the Chinese 22nd recoverable satellite are presented in this paper. Some coalescences of large spherical bubbles under microgravity are observed through bubbles staying at the upper side of the test cell. The data of bubble coalescence time are recorded and compared with theoretical predictions, which is based on a theory to describe the tendency of coalescence connected to chemical potential difference. It is implied that the theory is applicable for the experimental data of bubble coalescence. Moreover, the angle between the line of two bubble centers and temperature gradient falled mostly in the range 20 degrees-40 degrees. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
A high order accurate finite difference method for direct numerical simulation of coherent structure in the mixing layers is presented. The reason for oscillation production in numerical solutions is analyzed, It is caused by a nonuniform group velocity of wavepackets. A method of group velocity control for the improvement of the shock resolution is presented. In numerical simulation the fifth-order accurate upwind compact difference relation is used to approximate the derivatives in the convection terms of the compressible N-S equations, a sixth-order accurate symmetric compact difference relation is used to approximate the viscous terms, and a three-stage R-K method is used to advance in time. In order to improve the shock resolution the scheme is reconstructed with the method of diffusion analogy which is used to control the group velocity of wavepackets. (C) 1997 Academic Press.
Resumo:
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.