24 resultados para layered medium theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered steam injection, widely used in Liaohe Oilfield at present, is an effective recovery technique to heavy oil reserves. Which makes the steam front-peak push forward uniformly, the amount of steam injection be assigned rationally, and the effect of injection steam be obtained as expected. To maintain a fixed ratio of layered steam injection and solve the problem of nonadjustable hole diameter with the change of layer pressure in the existing injectors, a new method is proposed in this paper to design layered steam injectors based on the dynamic balance theory According to gas-liquid two-phase flow theory and heat transfer theory, the energy equation and the heat conduction equation in boreholes are developed. By analyzing the energy equilibrium of water-steam passing through the injector hole, we find an expression to describe the relation between the cross-sectional area of injector hole and the layer pressure. With this expression, we provide a new set of calculation methods and write the corresponding computer program to design and calculate the main parameters of a steam injector. The actual measurement data show that the theoretically calculated results are accurate, the software runs reliably, and they provide the design of self-adjustable layered steam injectors with the theoretical foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a reasonable analysis for dynamic response and failure process of a plane multi-layered media, which are subjected to a blast loading. This blast loading is induced by a cylindric explosive put on the center of top surface of the layered media. With the help of numerical simulation technique provided by LS-DYNA software, the whole process of explosion wave propagation and attenuation can be revealed. The feature of local failure around the blasting site is also discussed in some detail. Our focus will be on the explosion wave attenuation for the hard-soft-hard sandwich layers. As seen in the paper, the computational results are delivered in a feasible way by comparing with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By generalization of the methods presented in Part I of the study [J. Opt. Soc. Am. A 12, 600 (1994)] to the four-dimensional (4D) Riemannian manifold case, the time-dependent behavior of light transmitting in a medium is investigated theoretically by the geodesic equation and curvature in a 4D manifold. In addition, the field equation is restudied, and the 4D conserved current of the optical fluid and its conservation equation are derived and applied to deduce the time-dependent general refractive index. On this basis the forces acting on the fluid are dynamically analyzed and the self-consistency analysis is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medium polarization effects are studied for S-1(0) pairing in nuclear matter within BHF approach. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The self-energy corrections are consistently included resulting in a strong depletion of the Fermi surface. The self-energy effects always lead to a quenching of the gap, whereas it is almost completely compensated by the anti-screening effect in nuclear matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the relativistic chiral effective field theory, we study the effective mass of the Delta-resonance in medium by investigating the self-energy of the Delta-resonance related to the pi N decay channel in symmetric nuclear matter. We find that the effective mass of Delta-resonance decreases evidently with increasing nuclear density rho. In our calculation, we also consider the influence of the shifts of the nucleon mass, pion mass and its decay constant due to the restoration of chiral symmetry in medium. The results are roughly consistent with the data given by Lawrence Berkeley National Laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we try to detect the SZ effect in the 2MASS DWT clusters and less bound objects in order to constrain the warm-hot intergalactic medium distribution on large scales by cross-correlation analysis. The results of both observed WMAP and mock SZ effect map indicate that the hot gas distributes from inside as well as outside of the high density regions of galaxy clusters, which is consistent with the results of both observation and hydro simulation. Therefore, the DWT measurement of the cross-correlation would be a powerful tool to probe the missing of baryons in the universe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The axially deformed relativistic mean field theory with the force NLSH has been performed in the blocked BCS approximation to investigate the proper-ties and structure of N=Z nuclei from Z=20 to Z=48. Some ground state quantities such as binding energies, quadrupole deformations, one/two-nucleon separation energies, root-mean-squaxe (rms) radii of charge and neutron, and shell gaps have been calculated. The results suggest that large deformations can be found in medium-heavy nuclei with N=Z=38-42. The charge and neutron rms radii increase rapidly beyond the magic number N=Z=28 until Z=42 with increasing nucleon number, which is similar to isotope shift, yet beyond Z=42, they decrease dramatically as the structure changes greatly from Z=42 to Z=43. The evolution of shell gaps with proton number Z can be clearly observed. Besides the appearance of possible new shell closures, some conventional shell closures have been found to disappear in some region. In addition, we found that the Coulomb interaction is not strong enough to breakdown the shell structure of protons in the current region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter, and beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two- and three-body interaction. The investigation covers a wide baryon density range as needed in the applications to neutron stars. The results for the transport coefficients in beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of nonradial modes in neutron stars.