31 resultados para juveniles grading
Resumo:
The authors made 39 surveys (a total of 161 days) in the Tian-e-Zhou Oxbow of the Yangtze River, China, for observing 13 Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) captured from the main stream of the Yangtze River and 7 juveniles born in the oxbow from January 1997 to July 2000. The animals were usually divided into several "core" groups and moved around in shallow, muddy-bottom areas with the largest individual in the lead. Each core group was composed of 2-3 animals (either 2 adults, 1 adult and 1 juvenile, 2 adults and 1 juvenile, or 2 adults and 1 calf). Newly-released animals joined the other animals first, and then reorganized their own groups one or two days later. Average breath interval was 34.4 s (+/- s.d. 4.39) for individuals in the group. The animals mated from May through June and gave birth during the second and last ten days of April of the next year. The gestation period was estimated as 310 - 320 days. Calves over 5 months old began to eat small fish. The distance of calves swimming apart from their suspected mothers increased each month. These findings will help in the management of the reserve to protect this unique freshwater porpoise.
Resumo:
Microcystin-LR, a specific and potent hepatotoxin, was tested for its effects oil loach embryo-larval and juvenile development, The results of this study showed that loach embryos were more sensitive when exposed to microcystin-LR at a later than at an earlier stage of development, Juveniles were far less sensitive to MC-LR than were embryos and larvae. Mortality and developmental abnormality were proven to be dose-dependent and to be stage-specific sensitive. Among the abnormal changes noted were: pericardial edema and tubular heart, bradycardia, homeostasis, poor yolk resumption. small head, curved body and tail, and abnormal hatching, Liver and heart were the main targets of microcystin-LR toxicity. Ultrastructural analysis documented a complex set of sublethal effects of microcystin-LR on loach hepatocytes, chiefly including morphological alteration in nuclear and RER of loach liver cells. fit addition, microcystin-LR was lethal to loach juvenile in the subacute (7 days) exposure (LC50) = 593.3 mug/l). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Gibel carp (Carassius auratus gibelio Bloch) is a natural gynogenetic fish which requires sperm of the same or related species to activate egg development. The eggs of one gibel carp were divided into two batches. One batch was 'fertilized' with sperm from gibel carp (strain DD), and the other 'fertilized' with sperm from red common carp (Cyprinus carpio red variety) (strain DR). The juveniles were transferred to the laboratory 36 days post-hatch. Triplicate groups of each strain were fed a formulated diet at either 3% or satiation ration for 8 weeks. At both the restricted and satiation rations, specific growth rate was significantly higher in strain DR than in strain DD. At the 3% ration, there was no significant difference in feeding rate or feed conversion efficiency between the two strains. At the satiation ration, strain DR had a significantly lower feeding rate but higher feed conversion efficiency than strain DD. At the satiation ration, strain DR had a significantly lower intake protein, but higher recovered protein than strain DD. There was no significant difference in faecal protein loss between the two strains. At the 3% ration, strain had no significant effects on intake protein, faecal protein or recovered protein. Neither faecal energy loss nor recovered energy was affected by strain or ration. At both the 3% and satiation ration, final body contents of dry matter and lipid were significantly lower in strain DR than strain DD, while there was no significant difference in protein and energy content between the two strains at either ration level. The results suggested that gibel carp 'fertilized' with sperm of common carp grew faster than those 'fertilized' with sperm of gibel carp through increased feed conversion efficiency and protein retention.
Resumo:
Stocking experiments with Eriocheir sinensis were conducted in two small, shallow lakes to study its growth pattern in 1994-1997. For the initially immature crabs, carapace width (CW) increases from 21.2 +/- 0.4 mm (mean +/- s.e.) for females and 22.3 +/- 0.5 mm for males in January, to 65.4 +/- 0.5 mm for females and 66.9 +/- 0.6 mm for males in October. There is no significant difference in CW and carapace length (CL), although there is a large difference in body weight (BW) between sexes in every month from January to August when crabs are juvenile, however, there are significant differences in CW, CL. and BW between sexes after September when the crabs become sexually mature. The growth curve from January to October fits a logistic equation and may be expressed as CW = 75.7 (1 + exp (0.914 - 0.011t))(-1) for females, and CW = 77.5 (1 + exp (0.889 - 0.011t))-1 for males, where CW is in mm, t in days. For precocious crabs (reaching maturity by the first autumn, CW does not change much from January to July, which indicates that precocious crabs stop growing. Like juveniles, the precocious crabs show no differences in CW and CL, but do show a statistically significant difference in BW between sexes.
Resumo:
The compensatory growth responses of individual juveniles of two co-existing species were compared after identical periods of starvation to determine inter-specific similarities and differences. The carnivorous stickleback Gasterosteus aculeatus was compared with the omnivorous minnow Phoxinus phoxinus. Both species experienced 1 or 2 weeks of starvation before being re-fed ad libitum. The two species differed in their response to the starvation periods, with minnows showing a lower weight-specific loss. Both species showed compensatory responses in appetite, growth and to a lesser extent, growth efficiency. Minnows wholly compensated for 1 and 2 weeks of starvation. At the end of the experiment, sticklebacks starved For 2 weeks were still showing a compensatory response and had nut achieved full compensation. The compensatory responses of the sticklebacks showed a lag of a week before developing in the re-feeding phase, whereas the response of the minnows was immediate. Analysis of lipid and dry matter concentrations suggested that the compensatory response restored reserve lipids while also bringing the fish back to the growth trajectory of continuously fed fish. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
Fishes, the biggest and most diverse community in vertebrates are good experimental models for studies of cell and developmental biology by many favorable characteristics. Nuclear transplantation in fish has been thoroughly studied in China since 1960s. Fish nuclei of embryonic cells from different genera were transplanted into enucleated eggs generating nucleo-cytoplasmic hybrids of adults. Most importantly, nuclei of cultured goldfish kidney cells had been reprogrammed in enucleated eggs to support embryogenesis and ontogenesis of a fertile fish. This was the first case of cloned fish with somatic cells. Based on the technique of microinjection, recombinant MThGH gene has been transferred into fish eggs and the first batch of transgenic fish were produced in 1984. The behavior of foreign gene was characterized and the onset of the foreign gene replication occurred between the blastula to gastrula stages and random integration mainly occurred at later stages of embryogenesis. This eventually led to the transgenic mosaicism. The MThGH-transferred common carp enhanced growth rate by 2-4 times in the founder juveniles and doubled the body weight in the adults. The transgenic common carp were more efficient in utilizing dietary protein than the controls. An "all-fish" gene construct CAgcGH has been made by splicing the common carp beta-actin gene (CA) promoter onto the grass carp growth hormone gene (gcGH) coding sequence. The CAgcGH-transferred Yellow River Carp have also shown significantly fast-growth trait. Combination of techniques of fish cell culture, gene transformation with cultured cells and nuclear transplantation should be able to generate homogeneous strain of valuable transgenic fish to fulfil human requirement in 21(st) century.
Resumo:
genetics, such as: population size, reproduction, mating system, growth, development,genetic structure and systematics status; The main results are presented below: The seasonal variation of the operational sexual ratio of this animal was found in the field and the ration always bias the female in the breeding season. Aiming at this character and considering the distance of time and space of both sexual habitat in breeding season, we census female population first by toe-clipping mark-recapture method, then estimated the population size with the definitive sexual ratio. Up to now, this species was found only at the Beilun district of the Ningbo City. The population size of the Ruiyan Temple Forest Park approximates to 369. The status of this population is extremely endangered, so besides protecting this population at the original locality, we also suggested to breed the salamander in fenced locality and to hatch embryos artificially, and send metamorphosed juveniles back to nature. We can transfer some individuals to other similar habitats or breed them under artificial conditions for saving this species from extinction. The early developmental stage of the Chinhai salamander is the same as its relative species, E. andersoni. Their balanceres are poorly developed and disappear very early. Temperature and moisture significantly influence the embryonic development of the Chinhai salamander. The embryonic stage is approx. 29 days under room temperature. The hatchling grows in a logarithmic curve. The larvae stage in water is approx. 58- 88 days. Many factors influence the nomal development, including two aspects of internal and external. Due to these factors, the effective protected measures were presented in detail. The breeding migration of E. chinhaiensis takes place at late March~late April every year. This salamander's hatching rate is high, but the rate of hatchling migrating into water is low. The average effectiveness of all the nest sites is 36.7%. The maternal self-conservation was contrary to the reproductive success of the egg-laying strategy. In the strategy of egg-laying behavior, the first factor selected by the female was its self-conservation, the second is embryonic survival rate, and the last is rate of hatchling survival rate. The oviposition selection is significant for the survival of the larvae. Based on the analysis of the evolutionary process of reproductive behaviors nad egg-laying site selections of all genera of the family Salamandridae, we deduced that perhaps Echinotriton is a transitional type in the evolutionary process from water to land. Due to its location in the adaptive stage in the terrestrial evolution, Echinotriton chinhaiensis's terrestrial nest may be one of important reason that causes this species to be endangered. The genetic deversity analysis shows that although the population size of the Chinhai salamander is quite small compared to other Chinese salamandrid species, the genetic diversity of this population is not reduce remarkably. We explain this phenomena with the polygamy mating system of this species. The result of 4 families' parenthood determinations shows that the parenhood determination can be taken without any paternal information. The "children" of every female include rich genetic information from at least two "fathers". It implies that female Chinhai salamander mates more than once with different males in a breeding season. The molecular evidence, the behavioral observation evidences and the sperm evidence in the female cloaca proved that this species has a polygamy mating system. The kin recognition in the mating of adult salamander was first discussed. The taxonomic status and phylogenetic relationships of 12 species representing 6 genera in the family Salamandridae were studied using DNA fingerprinting. The results showed that the DNA fingerprinting. The results showed that the DNA fingerprinting patterns demonstrated rich genetic diversity and species diversity, and also revealed the taxonomic status and phylogenetic relationshipes of higher taxa to a certain extent. The results are highly consistent with those obtained from the studies based on the morphology, ecology, cytology and molecular biology. The compreshensive analysis indicate that Tylototrition hainanensis and T. wenxianensis should be valid species; Echinotriton should be a valid genus;Tylotortriton is a natural cluster; Tylotortriton asperrimus should be put in Tylototrition rather than in Echinotriton, Hypselotriton and Allomestriton are synonyms of Cynops and Paramesotriton, respectively. There are three main groups in Chinese salamandride: Cynops, Paramesotriton and Pachytrition from the first group, the species of the Tylototriton from the second, and E. chinhaiensis composes the third.
Resumo:
Juvenile tiger prawns (Penaeus semisulcatus De Haan and P. esculentus Haswell) show a strong association with vegetated habitats and are rarely caught on non-vegetated areas. This pattern of distribution may be caused by postlarvae selecting vegetation when they settle, or to differences in post-settlement mortality in different habitats. In this study, we examined whether the postlarvae and early juvenile stages of P. semisulcatus would distinguish between seagrass (Zostera capricorni Aschers) without epiphytes, artificial seagrass and bare substratum in the laboratory. The responses of prawns reared from the egg to different stages of postlarval and juvenile development were tested to determine whether, and when, each size class showed a response to a particular habitat. Five size classes of postlarvae (average carapace lengths [CL] of 1.2, 1.4, 1.6, 1.7 and 2.0 mm) were offered a choice between Z. capricorni and bare sand. Small size classes of postlarvae either did not respond to Z. capricorni (1.2 and 1.6 mm CL), or were more abundant on bare substratum than Z. capricorni. In contrast, the largest size classes of postlarvae (1.7 and 2.0 mm CL) were more abundant on Z. capricorni during the day but not at night. The behaviour of postlarvae changed markedly at a size of 1.7 mm CL (22 days from the first nauplius): smaller postlarvae frequently swam in the water column; 1.7 and 2.0 mm CL postlarvae spent much more. time resting on the substrate and perched on seagrass leaves. This size at which postlarvae first respond to seagrass during the day, and show mainly benthic behaviour, is similar to the size at which they are found on shallow seagrass beds in northern Australia. Large postlarvae (2.7 mm CL) and juveniles (4.1 mm CL) both were more abundant on artificial seagrass than bare sand during the day but not at night, indicating that they respond to structured habitats. When large postlarvae (2.4 mm CL) and juveniles (3.5 mm CL) were offered a choice between Z. capricorni without epiphytes and artificial seagrass, they were more abundant on the Z. capricorni, which suggests that chemical cues from seagrass may explain some of the responses of P. semisulcatus to seagrass. (C) 1997 Elsevier Science B.V.
Resumo:
A large number of polymorphic simple sequence repeats (SSRs) or microsatellites are needed to develop a genetic map for shrimp. However, developing an SSR map is very time-consuming, expensive, and most SSRs are not specifically linked to gene loci of immediate interest. We report here on our strategy to develop polymorphic markers using expressed sequence tags (ESTs) by designing primers flanking single or multiple SSRs with three or more repeats. A subtracted cDNA library was prepared using RNA from specific pathogen-free (SPF) Litopenaeus vannamei juveniles (similar to 1 g) collected before (0) and after (48 h) inoculation with the China isolate of white spot syndrome virus (WSSV). A total of 224 clones were sequenced, 194 of which were useful for homology comparisons against annotated genes in NCBI nonredundant (nr) and protein databases, providing 179 sequences encoded by nuclear DNA, 4 mitochondrial DNA, and 11 were similar to portions of WSSV genome. The nuclear sequences clustered in 43 groups, 11 of which were homologous to various ESTs of unknown function, 4 had no homology to any sequence, and 28 showed similarities to known genes of invertebrates and vertebrates, representatives of cellular metabolic processes such as calcium ion balance, cytoskeleton mRNAs, and protein synthesis. A few sequences were homologous to immune system-related (allergens) genes and two were similar to motifs of the sex-lethal gene of Drosophila. A large number of EST sequences were similar to domains of the EF-hand superfamily (Ca2+ binding motif and FRQ protein domain of myosin light chains). Single or multiple SSRs with three or more repeats were found in approximately 61 % of the 179 nuclear sequences. Primer sets were designed from 28 sequences representing 19 known or putative genes and tested for polymorphism (EST-SSR marker) in a small test panel containing 16 individuals. Ten (53%) of the 19 putative or unknown function genes were polymorphic, 4 monomorphic, and 3 either failed to satisfactorily amplify genomic DNA or the allele amplification conditions need to be further optimized. Five polymorphic ESTs were genotyped with the entire reference mapping family, two of them (actin, accession #CX535973 and shrimp allergen arginine kinase, accession #CX535999) did not amplify with all offspring of the IRMF panel suggesting presence of null alleles, and three of them amplified in most of the IRM F offspring and were used for linkage analysis. EF-hand motif of myosin light chain (accession #CX535935) was placed in ShrimpMap's linkage group 7, whereas ribosomal protein S5 (accession #CX535957) and troponin I (accession #CX535976) remained unassigned. Results indicate that (a) a large number of ESTs isolated from this cDNA library are similar to cytoskeleton mRNAs and may reflect a normal pathway of the cellular response after im infection with WSSV, and (b) primers flanking single or multiple SSRs with three or more repeats from shrimp ESTs could be an efficient approach to develop polymorphic markers useful for linkage mapping. Work is underway to map additional SSR-containing ESTs from this and other cDNA libraries as a plausible strategy to increase marker density in ShrimpMap.
Resumo:
A graded piezoelectric composite consisting of a spherically anisotropic graded piezoelectric inclusion imbedded in an infinite nonpiezoelectric matrix, with the physical properties of the graded spherical inclusion having a power-law profile with respect to the radial variable r, is studied theoretically. Under an external uniform electric field, the electric displacement field and the elastic stress tensor field of this spherically anisotropic graded piezoelectric composite are derived exactly by means of displacement separation technique, based on the governing equations in the dilute limit. A piezoelectric response mechanism, in which the effective piezoelectric response vanishes along the z direction (or x,y directions), is revealed in this kind of graded piezoelectric composites. Furthermore, it is found that the effective dielectric constant decreases (or increases) with the volume fraction p of the inclusions if the exponent parameter k of the grading profile is larger (or smaller) than a critical value. (C) 2007 American Institute of Physics.
Resumo:
The transformation field method (TFM) originated from Eshelby's transformation field theory is developed to estimate the effective permittivity of an anisotropic graded granular composite having inclusions of arbitrary shape and arbitrary anisotropic grading profile. The complicated boundary-value problem of the anisotropic graded composite is solved by introducing an appropriate transformation field within the whole composite region. As an example, the effective dielectric response for an anisotropic graded composite with inclusions having arbitrary geometrical shape and arbitrary grading profile is formulated. The validity of TFM is tested by comparing our results with the exact solution of an isotropic graded composite having inclusions with a power-law dielectric grading profile and good agreement is achieved in the dilute limit. Furthermore, it is found that the inclusion shape and the parameters of the grading profile can have profound effect on the effective permittivity at high concentrations of the inclusions. It is pointed out that TFM used in this paper can be further extended to investigate the effective elastic, thermal, and electroelastic properties of anisotropic graded granular composite materials.
Resumo:
The effects of Alexandrium tamarense (strain ATHK) on early development of the bay scallop Argopecten irradians concentricus were studied under laboratory conditions. The algal culture was verified by HPLC to produce paralytic shellfish poisoning (PSP) at a level of 37.48 fmol/cell. Survival of the scallop larvae was not affected when they were grown with A. tamarense at concentrations of 500-10,000 cells/ml for 48 h. However, the activity of D-shape larvae was inhibited after 48-h exposure to A. tamarense at the algal cell density of 10,000 cells/ml. Scallop growth was inhibited significantly by A. tantarense during a 14-day exposure starting at the eye-spot larval stage. The size of juvenile scallops in the group of 10,000 cells/ml was only about 32% of that of the controls, although no obvious effect of A. tamarense was found on the rate of larval metamorphosis. All juvenile scallops survived in algal concentrations of 600-2400 cells/ml, however, attachment rates were significantly lower than control values after a 5-h exposure to A. tamarense at concentrations >600 cells/ml, while they were not obviously reduced after only 1 h of exposure. At concentrations >600 cells/ml, the climbing ability of juveniles was clearly reduced by exposure to A. tamarense after only 1 h. The climbing rate and height were only 55% and 45%, respectively, of those of the controls, when exposed to A. tantarense at a concentration of 600 cells/ml. The results indicated that A. tamarense blooms may have detrimental impacts on shellfish at early life stages, therefore, special attention should be paid to the toxic algal blooms in shellfish breeding area. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The abundance of anchovy Engraulis japonicus larvae, >20 mum ciliates, copepod eggs and nauplii, and microzooplankton herbivorous activity were studied in the Yellow Sea in June 2000. Anchovy juveniles and larvae were found in only 6 of the 19 stations sampled. The ciliate communities were dominated by 2 species: Laboea strobila and Strombidium compressum. In the surface waters, the abundance of L. strobila ranged between 0 and 560 ind. l(-1). S. compressum only appeared at Stns 15 to 18 (20 to 3300 ind. l(-1)). L. strobila was found mainly in the top 20 m. The abundance of L. strobila was less than 50 ind, l(-1) in waters deeper than 25 m. S, compressum showed subsurface abundance peaks at the salinity abnormality. Tintinnids occurred occasionally with abundance lower than 100 ind. l(-1), The total ciliate abundance fell in the range of 40 to 3420 ind. l(-1). The ciliate biomass in the surface water and the water column ranged between 0,15 and 6.76 mug C l(-1) and 0.4 and 134.4 mg C m(-2), respectively, In the surface waters, the abundance of copepod eggs and nauplii ranged from 0,3 to 3.1 and 1,1 to 15.6 ind, l(-1), respectively. The average abundance of copepod eggs and nauplii in 4 depth (0, 5, 10 and 20 m) fell in the range of 0.2 to 2.8 and 1.0 to 29.4 ind. l(-1), respectively. As a food item of the E. japonicus post-larvae, the abundance of copepod nauplii and eggs appeared to be low. The abundance peaks of ciliate and E, japonicus post-larvae coincided. Although not found in the gut of E, japonicus post-larvae, aloricate ciliates might be ingested by first-feeding anchovy larvae, preventing initial starvation and prolonging the time to irreversible starvation. On the basis of dilution experiments with positive microzooplankton grazing rates, microzooplankton grazed at rates of 0 to 0.61 d(-1). Grazing pressure of microzooplankton on chlorophyll a standing stock (P-i) and potential chlorophyll a primary production (P-p) were 17 to 46% and 35 to 109% d(-1), respectively.
Resumo:
The effects of Heterosigma akashiwo on the early development of Argopecten irradians Lamarck: eggs, D-shaped larvae, eye-spot larvae and juveniles, were investigated under laboratory conditions. Exposing fertilized eggs to various densities of H. akashiwo algal culture revealed that the development of the embryos to the gastrula was significantly slowed at densities of more than 1 X 10(4) cells/ml algal cells, and mostly was arrested when the embryos reached the trochophore larvae stage. At this stage, several trochophore larvae were adhered together by the algal cells, resulting in the inhibition of their swimming activity. Larvae had still not developed into D-shaped larvae after 30 h, and therefore did not finish the hatching process. The attachment and adherence of the algal cells to the larvae might be an important process in the mechanism of the impact on egg hatching success. The activity of the D-shaped larvae was significantly inhibited after 48 h exposure to H. akashiwo at a density of 15 X 10(4) cells/ml and after 96 h at 10 X 10(4) cells/ml. The survival rate of the eye-spot larvae was decreased significantly after 48 h exposure to the algal culture at densities of more than 1 X 10(4) cells/ml. However, all the juveniles could survive and their climbing and attachment activity were not affected after 1 and 5 h exposure to the algal culture at all the various algal cell densities tested from 5 to 20 X 10(4) cells/ml. The results indicated that susceptibility of embryos or larvae to the alga H. akashiwo differs depending on the developmental stage. The embryos and the eye-spot larvae of A. irradians are more sensitive stages to the toxicity of H. akashiwo. Observed effects of H. akashiwo exposure on early development of A. irradians serve to point out to the potential danger of this alga for scallop populations. The possible toxicological mechanisms of H. akashiwo on the scallop embryos and larvae are discussed. (c) 2005 Elsevier B.V All rights reserved.
A new three-phase culture method for Manila clam, Ruditapes philippinarum, farming in northern China
Resumo:
Studies on reproduction, hatchery management, and culture of Manila clams Ruditapes philippinarum were carried out in an attempt to optimize their culture conditions and techniques. Results from these studies led to the development of a three-phase culture method for Manila clam farming in northern China. The key components of the new method were: 1) early spawning and over-wintering indoors (greenhouse); 2) optimized larval culture conditions and techniques; 3) juvenile rearing in shallow, fertilized nursery ponds; 4) optimized stocking size and density and substrate for mudflat grow out. Broodstock were maturated indoors for a month from early April to early May. Primarily because of higher water temperatures in the greenhouse the clams spawned more than one month earlier than in the natural environment. From May to July, juveniles were reared for 1-2 months indoors to a size of 2.0-3.0 mm in shell length before being moved to outdoor, pre-disinfected, nursery ponds. Juveniles were then reared in the nursery ponds for one month to about 1.0 cm before being transferred to the mudflat for grow out. Juvenile clams in nursery ponds grew considerably faster than in the natural environment probably because of higher temperatures and more abundant natural food. During grow out, the clams were reared for 4-7 months until they reached a market size (3.0-3.3 cm). Juveniles produced after August were over-wintered in the greenhouse in which the water temperature was about 3 degrees C higher than that of the outdoor environment. Juveniles grew at an average rate of > 20 mu m day(-1), while in the natural environment no growth was observed during winter because of low temperatures. Juveniles in the greenhouse grew to 2-3 mm by the following March before being moved into outdoor nursery ponds. The three-phase culture method not only shortened the production period from spawn to market size from 24-36 months to about 10-14 months, but also prolonged the spawning season from 2 to 7 months, resulting in increased production of seed and market-size clams. Compared with the traditional method, the new method could increase the yield of market-size clams by 10-11 times, and increase the profit per ha mudflat by as much as 124 times and the profit per kg market-size clams produced by 13 times. (c) 2006 Elsevier B.V. All rights reserved.