90 resultados para ion source


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the injection of additional electrons from an external electron gun into the plasma of a Penning ionization gauge (PIG) ion source, a test bench for the external electron-beam enhancement of the PIG (E-PIG) ion source was set up. A source magnet assembly was built to satisfy the request for magnetic field configuration of the E-PIG ion source. Numerical calculations have been done to optimize the magnetic field configuration so as to fit the primary electrons to be fed into the PIG discharge chamber along the spreading magnetic field lines. Many possible methods for improving the performance and stability of the PIG ion source have been used in the E-PIG ion source, including the use of multicrystal LaB6 cathode and optimized axial magnetic field. This article presents a detailed design of the E-PIG ion source. Substantial enhancement of ion charge state is expected to be observed which demonstrates that the E-PIG is a viable alternative to other much more costly and difficult to operate devices for the production of intense ion beams of higher charge state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance (ECR) ion source with advanced design in Lanzhou (SECRAL) is a next generation ECR ion source and aims for developing a very compact superconducting ECR ion source with a structure and high performances for highly charged ion-beam production. The ion source was designed to be operated at 18 GHz at initial operation and finally will be extended to 28 GHz. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. At full excitation, this magnet assembly can produce peak mirror fields on the axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. What is different from the traditional design, such as LBNL VENUS and LNS SERSE, is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. SECRAL may open the way for building a compact and high-performance 18-28 GHz superconducting ECR ion source. Very preliminary commissioning results are promising. Detailed design, construction issues and very preliminary test results of the ion source at 18 GHz are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With a latest developed electric-sweep scanner system, we have done a lot of experiments for studying this scanner system and ion beam emittance of electron cyclotron resonance (ECR) ion source. The electric-sweep scanner system was installed on the beam line of Lanzhou electron resonance ion source No. 3 experimental platform of Institute of Modem Physics. The repetition experiments have proven that the system is a relatively dependable and reliable emittance scanner, and its experiment error is about 10%. We have studied the influences of the major parameters of ECR ion source on the extracted ion beam emittance. The typical results of the experiments and the conclusions are presented in this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 320 kV high voltage (HV) platform has been constructed at Institute of Modern Physics (IMP) to satisfy the increasing requirements of experimental studies in some heavy ion associated directions. A high charge state all-permanent magnet ECRIS-LAPECR2 has been designed and fabricated to provide intense multiple charge state ion beams (such as 1000 e mu A O6+, 16.7 e mu A Ar14+, 24 e mu A Xe27+, etc.) for the HV platform. LAPECR2 has a dimension of 0 650 mm x 560 mm. The powerful 3D magnetic confinement to the ECR plasma and the optimum designed magnetic field for the operation at 14.5 GHz makes it possible to obtain very good performances from this source. After a brief introduction of the ECRIS and accelerator development at IMP, the conceptual design of LAPECR2 source is presented. The first test results of this all-permanent magnet ECRIS are given in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lanzhou All Permanent magnet ECR ion source NO. 1 (LAPECR1) is the first all permanent magnet multiple ECRIS made in IMP. This ECRIS is running at 14.5GHz and can provide intense low charge state ion beams (varying from several to hundreds of e mu A) or medium charge state ion beams (varying from several to tens of e mu A). The size of source body is circle divide 102mmx296mm, the compactness and economical features enable the source suitable to be put on a HV platform or equipped by a small laboratory. This article gives the main parameters of the ion source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e mu A of O7+, 505 e mu A of Xe20+ 306 e mu A of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e mu A of Xe-129(43+), 22 e mu A of Bi-209(41+), and 1.5 e mu A of Bi-209(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e mu A of Xe-129(27+) and 152 e mu A of Xe-129(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and Xe-129(27+), Kr-78(19+), Bi-209(31+), and Ni-58(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development of SECRAL will be presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Titanium and zirconia are bioinert materials lacking bioactivity. In this work, surface modification of the two typical biomaterials is conducted by Mg-ion-implantation using a MEVVA ion source in an attempt to increase their bioactivity. Mg ions were implanted into zirconia and titanium with fluences ranging from 1 x 10(17) to 3 x 10(17) ions/cm(2) at 40 keV. The Mg-implanted samples, as well as control (unimplanted) samples, were immersed in SBF for 7 days and then removed to identify the presence of calcium and phosphate (Ca-P) coatings and to characterize their morphology and structure by SEM, XRD, and FT-IR. SEM observations confirm that globular aggregates are formed on the surfaces of the Mg-implanted zirconia and titanium while no precipitates are observed on the control samples. XRD and FT-IR analyses reveal that the deposits are carbonated hydroxyapatite (HAp). Our experimental results demonstrate that Mg-implantation improves the bioactivity of zirconia and titanium. Further, it is found that the degree of bioactivity is adjustable by the ion dose. Mechanisms are proposed to interpret the improvement of bioactivity as a result of Mg implantation and the difference in bioactivity between zirconia and titanium. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A direct ion beam deposition system designed for heteroepitaxy at a low substrate temperature and for the growth of metastable compounds has been constructed and tested. The system consists of two mass-resolved low-energy ion beams which merge at the target with an incident energy range 50-25 000 eV. Each ion beam uses a Freeman ion source for ion production and a magnetic sector for mass filtering. While a magnetic quadrupole lens is used in one beam for ion optics, an electrostatic quadrupole lens focuses the other beam. Both focusing approaches provide a current density more than 100-mu-A/cm2, although the magnetic quadrupole gives a better performance for ion energies below 200 eV. The typical current of each beam reaches more than 0.3 mA at 100 eV, with a ribbon beam of about 0.3-0.5 x 2 cm2. The target is housed in an ultrahigh vacuum chamber with a base pressure of 1 x 10(-7) Pa and a typical pressure of 5 x 10(-6) Pa when a noncondensable beam like argon is brought into the chamber. During deposition, the target can be heated to 800-degrees-C and scanned mechanically with an electronic scanning control unit. The dual beam system has been used to grow GaN using a Ga+ and a N+ beam, and to study the oxygen and hydrogen ion beam bombardment effects during carbon ion beam deposition. The results showed that the simultaneous arrival of two beams at the target is particularly useful in compound formation and in elucidation of growth mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Uranium ion beams were produced from electron cyclotron resonance (ECR) ion sources by sputtering method this year at the Institute of Modern Physics. At first, we chose the Lanzhou ECR No. 3 ion source to implement the production experiment of U ion beams. Finally, 11 e mu A of U28+, 5 e mu A of U32+, and 1.5 e mu A of U35+ were obtained. A U26+ ion beam produced by the LECR2 ion source was accelerated successfully by the cyclotron. This means that the Heavy Ion Research Facility in Lanzhou (HIRFL) has accomplished the acceleration of the ion beam of the heaviest element according to the designed parameters. The Lanzhou ECR ion source No. 2 (LECR2), which was built in 1997, has served the HIRFL for eight years and needed to be upgraded to provide more intense high charge state ion beams for HIRFL cooling storage ring. We started the upgrading project of LECR2 last year, and the modified design just has been finished. (c) 2006 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The high charge state all permanent Electron Cyclotron Resonance Ion Source (ECRIS) LAPECR2 (Lanzhou All Permanent magnet ECR ion source No.2) has been successfully put on the 320kV HV platform at IMP and also has been connected with the successive LEBT system. This source is the largest and heaviest all permanent magnet ECRIS in the world. The maximum mirror field is 1.28T (without iron plug) and the effective plasma chamber volume is as large as circle divide 67mm x 255mm. It was designed to be operated at 14.5GHz and aimed to produce medium charge state and high charge state gaseous and also metallic ion beams. The source has already successfully delivered some intense gaseous ion beams to successive experimental terminals. This paper will give a brief overview of the basic features of this permanent magnet ECRIS. Then commissioning results of this source on the platform, the design of the extraction system together with the successive LEBT system will be presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since 1998, many experiments for metallic ion production have been done on LECR2 (Lanzhou ECR ion source NO.2), LECR3 (Lanzhou ECR ion source NO.3) and SECRAL (Superconductiong ECR ion source Advanced design in Lanzhou) at Institute of Modern Physics. The very heavy metallic ion beams such as those of uranium were also produced by the plasma sputtering method, and supplied for HIRFL (Heavy Ion Research Facility in Lanzhou) accelerators successfully. During the test, 11.5e mu AU(28+), 9e mu AU(24+) were obtained. Some ion beams of the metal having lower melting temperature such as Ni and Mg ion beams were produced by oven method on LECR3 too. The consumption rate was controlled to be lower for Mg-26 ion beams production, and the minimum consumption was about 0.3mg per hour. In this paper, the main experimental results are given. Some discussions are made for some experimental phenomena and results, and some conclusions are drawn.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The emittance of an extracted ion beam can be estimated to first order by a series of three linear independent profile measurements. This estimation is restricted to the evaluation of an upper limit of the emittance value for a homogeneous, nonfilamented beam. The beam is assumed to be round, respectively elliptical, without any structure of the intensity distribution, no space charge has been assumed for the drifting beam, and the optics is assumed to be linear. Instead of using three different drift sections, a linear focusing element with three different focusing strengths can be used. Plotting the beam radius as function of focusing strength, three independent solutions can be used to calculate the Twiss parameters alpha, beta, and gamma and furthermore the emittance epsilon. Here we describe the measurements which have been performed with the SECRAL ion source at Institute of Modern Physics Lanzhou.