26 resultados para indirect quantification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a method for determining arsenic species by capillary zone electrophoresis (CZE) with indirect laser-induced fluorescence (LIF) is described in this paper. The buffer pH, the concentration of fluorescein, the nature and the concentration of the background electrolytes (BGEs) were defined. When 2.0 mM NaHCO3 (pH 9.28) with 10(-7) M fluorescein was used as the buffer, arsenite (As(lll), dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), and arsenate (As(V)) were all separated from one another. The limits of detection for the four arsenic species were p p in the range of 0.12-0.54 mg/L. This method was used in the analysis of spiked arsenic species in tap and mineral water to demonstrate its usefulness. The results showed that both the recovery and the reproducibility of the developed method were acceptable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)3(2+)) cathodic electrochemiluminescence (ECL) was generated at -0.78V at the Pt electrode in acetonitrile (ACN), which suggested that the cathodic ECL differed from conventional cathodic ECL It was found that tripropylamine (TPrA) could enhance this cathodic ECL and the linear range (log-log plot) was 0.2 mu M-0.2 mM. In addition, hydrogen peroxide (H2O2) could inhibit the cathodic ECL and was indirectly detected with the linear range of 27-540 mu M. The RSD (n = 12) of the ECL intensity in the presence of 135 mu M H2O2 was 0.87%. This method was also demonstrated for the fast determination of H2O2 in disinfectant sample and satisfactory results were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel amperometric biosensor for quantification of the electrochemically inert polar organic solvents based on tyrosinase electrode was preliminarily reported. The biosensor was fabricated by simply syringing an aqueous solution of tyrosinase/PVAVP (PVAVP: copolymer of poly(vinyl alcohol) grafting with 4-vinylpyridine) onto glassy carbon electrode surface followed by drying the modified electrode at +4 degrees C in a refrigerator. The current generated from electrochemical reduction of quinone is a probe signal. The biosensor can be used for quantification of polar organic solvents, and its mechanism was characterized with in situ steady-state amperometry-quartz crystal microbalance experiments. The detection limit, sensitivity, and dynamic range for certain organic solvents are dependent on the kind and concentration of the substrate probe and the hydrophobicity of the immobilization matrix. The response time for all the tested organic solvents is less than 2 min.