25 resultados para impact ionization


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Coulomb explosion of ammonia clusters induced by nanosecond laser at 532 not with an intensity of similar to 10(12) Wcm(-2) has been studied by time of flight mass spectrometry. The dominant multiply charged ions are N3+ and N2+ with kinetic energies of 110 and 50 eV respectively. The electrons generated from the multiphoton ionization are heated through inverse bremsstrahlung by the laser field when colliding with neutral or ionic particles. When their energies surpass the corresponding ionization potentials of the molecules or ions, the subsequent electron impact ionization may take place thus resulting in multi-charged nitrogen ions. Covariance analysis is made to study the possible pathways of the Coulomb explosion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The momentum distributions of recoil ions were measured in the single ionization of neon by electron impact at incident energies between 80 and 2300 eV. It was found that there are a noticeable number of recoil ions carrying large momenta, and the relative contributions of these ions becomes more pronounced with the further decrease of incident electron energy. These observed behaviors indicate that there is a strong projectile-target-core interaction in the single-ionization reaction. By comparing our results with those of electron-neon elastic scattering, we concluded that the elastic scattering of the projectile electron on the target core plays an important role at low and intermediate collision energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the influence of ionization on the propagation and spectral effects of a few-cycle ultrashort laser pulse in a two-level medium. It is found that when the fractional ionization is weak, the production of higher spectral components makes no difference. However, when the two states are essentially depleted before the peak of the laser pulse, the impact of ionization on the higher spectral components is very significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-induced fragmentation of C-60 has been studied using a time-of-flight mass spectrometric technique. The average kinetic energies of fragment ions C-n(+) (n <= 58) have been extracted from the measured full width at half maximum (FWHM) of ion beam profiles. The primary formation mechanism of small fragment ion C-n(+) (n < 30) is assumed to be a two-step fragmentation process: C60 sequential decay to unstable C-30(+) ion and the binary fission of C-30(+). Considering a second photo absorption process in the later part of laser pulse duration, good agreement is achieved between experiment and theoretical description of photoion formation. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ratios R-k1 of k-fold to single ionization of the target atom with simultaneous one-electron capture by the projectile have been measured for 15-480 keV/u (nu(p) = 0.8-4.4 a.u.) collisions of Cq+, Oq+ (q=1-4) with Ar, using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. The present ratios are similar to those for He+ and He2+ ion impact. The energy dependence of R-k1 shows a maximum at a certain energy, E-max. which approximately conforms to the q(1/2)-dependence scaling. For a fixed projectile state, the ratios R-k1 also vary strongly with outgoing reaction channels. The general behavior of the measured data can be qualitatively analyzed by a simple impact-parameter, independent-electron model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple model has been developed within the independent-particle model (IPM) based on the Bohr-Lindhard model and classical statistical model. Cross sections for transfer ionization of helium by ions A(q+) (q = 1-3) are calculated for impact energies between 10 and 6000 keV/u. The calculated cross sections are in good agreement with the experimental data of helium by He(1-2)+ and Li(1-3)+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross sections of electron- loss in H( 1s)+ H( 1s) collisions and total collisional destruction of H( 2s) in H( 1s) + H( 2s) collisions are calculated by four- body classical- trajectory Monte Carlo ( CTMC) method and compared with previous theoretical and experimental data over the energy range of 4 - 100 keV. For the former a good agreement is obtained within di. erent four- body CTMC calculations, and for the incident energy Ep > 10 keV, comparison with the experimental data shows a better agreement than the results calculated by the impact parameter approximation. For the latter, our theory predicts the correct experimental behaviour, and the discrepancies between our results and experimental ones are less than 30%. Based on the successive comparison with experiments, the cross sections for excitation to H( 2p), single- and double- ionization and H- formation in H( 2s)+ H( 2s) collisions are calculated in the energy range of 4 - 100 keV for the. rst time, and compared with those in H( 1s)+ H( 1s) and H( 1s)+ H( 2s) collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The double ionization of helium by electron impact for 106 eV incident energy was studied in a kinematically complete experiment by using a reaction microscope. The pattern of the angular correlation of the three emitted electrons was analyzed by selecting different values of the recoil ion longitudinal momentum. The Wannier predicted geometry appears when the recoil ion carries the full initial projectile momentum. It was found that at this low impact energy, the outgoing electrons still remember the initial-state collision information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The processes of transfer ionization in He2+ -He collisions at energies ranging from 20 to 40 keV have been studied experimentally by means of cold target recoil ions momentum spectroscopy. From the longitudinal momentum spectra of recoil ions, different mechanisms of transfer ionization have been obtained. The results show that one of the electrons of helium atom being captured into the ground state of projectile ion He2+ and the other one emitted to the continuum state of projectile or target are the dominant mechanisms of transfer ionization. The autoionization cross section of projectile after two-electron capture into a double excited state is small. Transfer ionization for one target electron capture into ground state and the other one into the continuum of projectile mainly occurs at large impact parameter collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is found that the nitro substituent of some aromatic bifunctional compounds shows unusual reactivity towards protonation. In the chemical ionization mass spectra of nitrobenzoic acids and their esters and amides, and of nitrophenols and their ethers, protonations on the carboxyl, ester, amide, hydroxyl or alkoxyl groups are highly suppressed by that on the nitro group. As a result, fragmentations based on protonation on these groups unexpectedly become negligible. Ortho effects were observed for all the ortho isomers where the initial protonation on the nitro group is followed by an intramolecular proton transfer reaction, which leads to the expected 'normal' fragmentations. Protonation on the nitro substituent is much more favourable in energy than on any of the other substituents. The interaction of the two substituents through the conjugating benzene ring is found to be responsible for this 'unfair' competitive protonation. The electron-attracting nitro group strongly destabilizes the MH+ ions formed through protonation on the other substituent; although the COR (R = OH, OMe, OEt, NH2) groups are also electron-withdrawing, their effects are weaker than that of NO2; thus protonation on the latter group produces more-stable MH+ ions. On the other hand, an electron-releasing group OR (R = H, Me, Et) stabilizes the nitro-protonated species; the stronger the electron-donating effect of this group the more stable the nitro-protonated ions.