30 resultados para image texture analysis
Resumo:
In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.
Resumo:
In practical situations, the causes of image blurring are often undiscovered or difficult to get known. However, traditional methods usually assume the knowledge of the blur has been known prior to the restoring process, which are not practicable for blind image restoration. A new method proposed in this paper aims exactly at blind image restoration. The restoration process is transformed into a problem of point distribution analysis in high-dimensional space. Experiments have proved that the restoration could be achieved using this method without re-knowledge of the image blur. In addition, the algorithm guarantees to be convergent and has simple computation.
Resumo:
This paper applies data coding thought, which based on the virtual information source modeling put forward by the author, to propose the image coding (compression) scheme based on neural network and SVM. This scheme is composed by "the image coding (compression) scheme based oil SVM" embedded "the lossless data compression scheme based oil neural network". The experiments show that the scheme has high compression ratio under the slightly damages condition, partly solve the contradiction which 'high fidelity' and 'high compression ratio' cannot unify in image coding system.
Resumo:
With a view to solve the problems in modern information science, we put forward a new subject named High-Dimensional Space Geometrical Informatics (HDSGI). It builds a bridge between information science and point distribution analysis in high-dimensional space. A good many experimental results certified the correctness and availability of the theory of HDSGI. The proposed method for image restoration is an instance of its application in signal processing. Using an iterative "further blurring-debluring-further blurring" algorithm, the deblured image could be obtained.
Resumo:
With a view to solve the problems in modern information science, we put forward a new subject named High-Dimensional Space Geometrical Informatics (HDSGI). It builds a bridge between information science and point distribution analysis in high-dimensional space. A good many experimental results certified the correctness and availability of the theory of HDSGI. The proposed method for image restoration is an instance of its application in signal processing. Using an iterative "further blurring-debluring-further blurring" algorithm, the deblured image could be obtained.
Resumo:
A bisfurylfulgide, E, E-3,4-bis[1-(2,5-dimethyl-3-furyl)ethylidene]-3,4-dihydrofuran-2,5-dione, is synthesized by Stobbe condensation reaction. The molecular structure of target compound is confirmed by single crystal X-ray crystallography analysis. It shows that the distances between two possible reaction sites of molecule are 0.3394 and 0.3406 nm respectively, which is favorable to photocyclization. The photochromic properties of this compound in different solvents are investigated, and the result shows that the compound exhibits excellent photochromic behavior. The primary result of applied research on parallel image storage is also presented.
Resumo:
Cobalt nanowires with controlled diameters have been synthesized using electrochemical deposition in etched ion-track polycarbonate membranes. Structural characterization of these nanowires with diameter 70, 90, 120 nm and length 30 mu m was performed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. The as-prepared wires show uniform diameter along the whole length and X-ray diffraction analysis reveals that [002] texture of these wires become more pronounced as diameter is reduced. Magnetic characterization of the nanowires shows a clear difference of squareness and coercivity between parallel and perpendicular orientations of the wires with respect to the applied field direction. In case of parallel applied field, the coercivity has been found to be decreasing with increasing diameter of the wires while in perpendicular case; the coercivity observes lower values for larger diameter. The results are explained by taking into account the magnetocrystalline and shape anisotropies with respect to the applied field and domain transformation mechanism when single domain limit is surpassed.
Resumo:
Neighbor embedding algorithm has been widely used in example-based super-resolution reconstruction from a single frame, which makes the assumption that neighbor patches embedded are contained in a single manifold. However, it is not always true for complicated texture structure. In this paper, we believe that textures may be contained in multiple manifolds, corresponding to classes. Under this assumption, we present a novel example-based image super-resolution reconstruction algorithm with clustering and supervised neighbor embedding (CSNE). First, a class predictor for low-resolution (LR) patches is learnt by an unsupervised Gaussian mixture model. Then by utilizing class label information of each patch, a supervised neighbor embedding is used to estimate high-resolution (HR) patches corresponding to LR patches. The experimental results show that the proposed method can achieve a better recovery of LR comparing with other simple schemes using neighbor embedding.
Resumo:
Mammographic mass detection is an important task for the early diagnosis of breast cancer. However, it is difficult to distinguish masses from normal regions because of their abundant morphological characteristics and ambiguous margins. To improve the mass detection performance, it is essential to effectively preprocess mammogram to preserve both the intensity distribution and morphological characteristics of regions. In this paper, morphological component analysis is first introduced to decompose a mammogram into a piecewise-smooth component and a texture component. The former is utilized in our detection scheme as it effectively suppresses both structural noises and effects of blood vessels. Then, we propose two novel concentric layer criteria to detect different types of suspicious regions in a mammogram. The combination is evaluated based on the Digital Database for Screening Mammography, where 100 malignant cases and 50 benign cases are utilized. The sensitivity of the proposed scheme is 99% in malignant, 88% in benign, and 95.3% in all types of cases. The results show that the proposed detection scheme achieves satisfactory detection performance and preferable compromises between sensitivity and false positive rates.
Resumo:
Tensor analysis plays an important role in modern image and vision computing problems. Most of the existing tensor analysis approaches are based on the Frobenius norm, which makes them sensitive to outliers. In this paper, we propose L1-norm-based tensor analysis (TPCA-L1), which is robust to outliers. Experimental results upon face and other datasets demonstrate the advantages of the proposed approach.
Resumo:
Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e. g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.
Resumo:
Wave-number spectrum technique is proposed to retrieve coastal water depths by means of Synthetic Aperture Radar (SAR) image of waves. Based on the general dispersion relation of ocean waves, the wavelength changes of a surface wave over varying water depths can be derived from SAR. Approaching the analysis of SAR images of waves and using the general dispersion relation of ocean waves, this indirect technique of remote sensing bathymetry has been applied to a coastal region of Xiapu in Fujian Province, China. Results show that this technique is suitable for the coastal waters especially for the near-shore regions with variable water depths.